Question

A buck-boost converter has input voltage of 12V and operates with a duty cycle of 0.6...

A buck-boost converter has input voltage of 12V and operates with a duty cycle of 0.6 at a frequency of 50kHz and a load current of 5A average. Assuming sufficiently large L, and C = 500uF, calculate the peak-peak output voltage ripple and the rms current rating for the capacitor and inductor.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A buck-boost converter has input voltage of 12V and operates with a duty cycle of 0.6...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Design a buck converter which has an output of 12V from an input of 18V. The...

    Design a buck converter which has an output of 12V from an input of 18V. The output power is 10W. The output voltage ripple must be no more than 100mV peak to peak. Specify the duty ratio, switching frequency is 500kHz, ton, and inductor and capacitor values. Design for continuous inductor current. Assume ideal conditions, and assume the output current is symmetric

  • 2. Renewable energy system requires a boost converter with input voltage variation of 18 V to 42 ...

    2. Renewable energy system requires a boost converter with input voltage variation of 18 V to 42 V (de) and gives output of 120 V at 0.6 kW. For the converter the switching frequency is set at 50 kHz. a) Find the operating duty cycle range for each switch of the converter0 marks b) 196 What is the inductor value which should keep inductor current variation below under all input voltages [30 marks] c) Find the capacitor value which should...

  • A Buck-boost converter has an output voltage 100 V, output power 60 W and input voltage...

    A Buck-boost converter has an output voltage 100 V, output power 60 W and input voltage 12 V. Switching frequency is 15 kHz. Calculate duty ratios for the switch and the diode. Find values for the inductor L and capacitor C, when the allowed output voltage ripple is ±0.15 % and the inductor current ripple is ±1 % (of the average value). If the on-time of the switch has an inaccuracy of ±50 ns, what is the new output voltage...

  • Buck Converter: Theory, schematic, operation, advantages, application, duty cycle, efficiency Design calculation Example:               Input voltage:      

    Buck Converter: Theory, schematic, operation, advantages, application, duty cycle, efficiency Design calculation Example:               Input voltage:                       min 12V max 17V            Output voltage:                    nominal (regulated) 15V            Nominal load current:        3 A                        Max Switching frequency:             20 kHz           Output voltage ripple:        25 mV Draw the schematic, find L, C, Diode current, max drain voltage, max and min duty cycle

  • A buck converter is used to have low output voltage from the high input source to...

    A buck converter is used to have low output voltage from the high input source to low output voltage. The estimated power output is at 25 kW with the switching frequency of 25 kHz. Design the buck converter as by finding and following specifications consider the ripple of the output is set at 1% (i) Calculate the duty ratio of the buck converter (1 mark) (ii) Determine the minimum requirement for the inductor and the capacitor (5 marks) (iii) Determine...

  • 1) (6 points) It is desired to design a 50 W buck-boost converter to regulate its...

    1) (6 points) It is desired to design a 50 W buck-boost converter to regulate its output voltage at 26V from a solar panel whose output voltage varies between 20 and 40 V. The desired switching frequency is 20 kHz. The ripple current in the inductor should remain within +/-0.1 A, and the output voltage ripple should not exceed +/- 2%. a. Determine the duty cycle range for operating this converter. b. Design this buck-boost converter by finding lower limits...

  • Design a boost converter power stage to the following specification: Input voltage Output voltage: Output voltage...

    Design a boost converter power stage to the following specification: Input voltage Output voltage: Output voltage ripple:max 20mV Load power: Switching frequency: 15kHz 110-125V 300V 1.5kW Calculate: (i) Maximum duty cycle (ii) Minimum duty cycle (iii) Average diode current (iv) Assuming the Rds(on) of the MOSFET is 0.01 Ω, and the diode forward voltage is 0.8V, calculate the approximate efficiency of the circuit. 2. A switching power supply shown in the circuit below has its switch driven by a signal...

  • 18 marks load with a power of 25.6 W.The cy f is 40kHz. sign a buck-boost converter to produce an output voltage of 16V a put voltage ripple must not exceed 1%. The dc input voltage is 24V. Th e swit...

    18 marks load with a power of 25.6 W.The cy f is 40kHz. sign a buck-boost converter to produce an output voltage of 16V a put voltage ripple must not exceed 1%. The dc input voltage is 24V. Th e switching frequen 121 a) the duty ratio b) Find the size of the inductor so that the maximum inductor current c) the size of the capacitor d) Assume L=1 00μH and the switching frequency fis variable. 141 121 Lma 10A...

  • 2.9 To reduce the switching harmonics present in the input current of a certain buck converter,...

    2.9 To reduce the switching harmonics present in the input current of a certain buck converter, an input filter consisting of inductor Li and capacitor Ci is added as shown in Fig. 2.32. Such filters are commonly used to meet regulations limiting conducted electromagnetic interference (EMI). For this problem, you may assume that all inductance and capacitance values are sufficiently large, such that all ripple magni- tudes are small CI Fig. 2.32 Addition of L-C input filter to buck converter,...

  • Afs 4. Design a Buck-Boost Converter to convert 10 vdc to -20 vdc, using the switching...

    Afs 4. Design a Buck-Boost Converter to convert 10 vdc to -20 vdc, using the switching frequency of 50 kHz for a load resistance of 50 22. (a) What is the duty ratio, D? (b) What is the minimum value for the inductor to be utilized? (C) Assuming to utilize an inductor with double the minimum value, determine the maximum inductor current. (d) For an output voltage ripple of 3%, determine the value of the output capacitor, non

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT