Question

The initial kinetic energy of a block moving on a horizontal floor is 48 J. A...

The initial kinetic energy of a block moving on a horizontal floor is 48 J. A constant frictional force acts on the block bringing it to rest over a distance of 2 m. What is the frictional force on the block?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

work done = change in kinetic energy

W = Final kinetic energy - initial kinetic energy

= 0 - 48 = -48J

work done by frictional force = F*d*cos a

-48 = F*2*cos 180

F= 24 N

so the frictional force on the block is 24 N

Add a comment
Know the answer?
Add Answer to:
The initial kinetic energy of a block moving on a horizontal floor is 48 J. A...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3 A 6-kg block is moving on a horizontal frictionless floor with a speed of...

    Problem 3 A 6-kg block is moving on a horizontal frictionless floor with a speed of 4 m/s when a constant horizontal force F is applied to the block. The speed of the block increases to 10 m/s within a distance of 5 m. Find (a) initial and final kinetic energy, and (b) the applied force F Problem 4 A0.50 kg block sliding on a horizontal frictionless surface with a speed of 2.5 m/s strikes a light spring that has...

  • In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of spring constant 660 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction ?k = 0.272. The frictional force stops the block in distance D = 7.9 m. What are (a) the increase in the thermal energy of the block In the figure, a 2.6 kg block is accelerated from...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

  • A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 890 N/m . The coefficient of kinetic friction between the floor and the block is 0.38 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 820 N/m . The coefficient of kinetic friction between the floor and the block is 0.41 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0140 m from its initial position? (At this...

  • In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring of spring constant 600 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction uk= 0.30.The frictional force stops the block in the distance of D = 8.0 m. -- No friction a) Find the increase in the thermal energy of the block-floor system b) What is the original compression...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0380 m . The spring has force constant 810 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • In the figure, a 2.8 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.8 kg block is accelerated from rest by a compressed spring of spring constant 650 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk = 0.290. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block–floor system, (b) the maximum kinetic energy of the block, and...

  • In the figure below, a 3.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 3.0 kg block is accelerated from rest by a compressed spring of spring constant 640 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction μk = 0.25. The frictional force stops the block in distance 6.2 m. (a) What is the increase in the thermal kinetic energy of the block floor system? ___J (b) What was the maximum kinetic energy...

  • In the figure, a 4.2 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 4.2 kg block is accelerated from rest by a compressed spring of spring constant 650 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction WK = 0.264. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kinetic energy of the block, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT