Question

4.) A light horizontal spring (k=4000 N/m) is compressed 10 centimeters from its relaxed state by...

4.) A light horizontal spring (k=4000 N/m) is compressed 10 centimeters from its relaxed state by a 3 kg mass on the left, and a 5 kg mass on the right, which are initially at rest. The spring then is allowed to relax, pushing the masses apart. A.) Calculate the final total kinetic energy of this system (i.e. both masses). (20 J) B.) Determine the final velocity of each mass when the spring relaxes. Assume friction is negligible.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
4.) A light horizontal spring (k=4000 N/m) is compressed 10 centimeters from its relaxed state by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A light spring of force constant 3.90 N/m is compressed by 8.00 cm and held between...

    A light spring of force constant 3.90 N/m is compressed by 8.00 cm and held between a 0.250 kg block on the left and a 0.520 kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is the following. In each case, assume...

  • A light spring of force constant 4.15 N/m is compressed by 8.00 cm and held between...

    A light spring of force constant 4.15 N/m is compressed by 8.00 cm and held between a 0.250 kg block on the left and a 0.530 kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is the following. In each case, assume...

  • A 2.1.0-kg block is accelerated from rest by a compressed spring (ks = 545 N/m). The...

    A 2.1.0-kg block is accelerated from rest by a compressed spring (ks = 545 N/m). The block leaves the spring at the spring’s relaxed length. The block then travels along a rough horizontal with a coefficient of kinetic friction μk = 0.240 a distance of x = 6.90 m before frictional force stops the block. What was the original compression distance of the spring?

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • 6. Consider a horizontal spring with spring constant k. A block with mass m is pushed far to the left against the spring until the spring is compressed a distance r relative to its relaxed length. A...

    6. Consider a horizontal spring with spring constant k. A block with mass m is pushed far to the left against the spring until the spring is compressed a distance r relative to its relaxed length. A second block, which is stationary and also has a mass m, is located to the right of the spring im rrm a) We release the first block from rest. Due to the force from the spring, it slides to the right and eventually...

  • 2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m....

    2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m. The spring is compressed a distance x 0.45 m. When released, m is fired towards a block of mass m2-4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h-0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ.-0.25 and is a distance d-1.06 m long. The blocks...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • (this question is from an algebra based physics class) A spring ( K= 100 N/n) is...

    (this question is from an algebra based physics class) A spring ( K= 100 N/n) is attached to a post on a table (h=0.9) high. It is compressed 5 cm and a mass (m1= 5kg) is placed next to the spring, and is released from rest. The friction between the mass and the table is negligible. It collides and sticks to a second mass (m2= 5kg) which is at rest at the end of the table. Both masses fly off...

  • A light spring with force constant 35 N/m is compressed by 8.0 cm as it is...

    A light spring with force constant 35 N/m is compressed by 8.0 cm as it is held between a 0.25 kg block on the left and a 0.50 kg block on the right. Both blocks and the spring are resting on a horizontal surface. When the blocks are simultaneously released from rest, find the acceleration with which each block starts to move given that p 0.1 between the blocks and the surface.

  • A light spring with force constant 3.85 N/m is compressed by 8.0 cm as it is...

    A light spring with force constant 3.85 N/m is compressed by 8.0 cm as it is held between a 0.25 kg block on the left and a 0.50 kg block on the right. Both blocks and the spring are resting on a horizontal surface. When the blocks are simultaneously released from rest, find the acceleration with which each block starts to move given that uk 0.1 between the blocks and the surface.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT