Question

Two blocks are sliding across a horizontal frictionless tabletop. Block A has a mass of 5...

Two blocks are sliding across a horizontal frictionless tabletop. Block A has a mass of 5 kg, and it is sliding directly southward with a speed of 8 m/s. Block B has a mass of 7 kg, and it is sliding directly westward with a speed of 4 m/s. The blocks then collide and stick together. What is the speed of the new combined block after the collision?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

conservation of momentum

m1 v1 + m2 v2 = (m1 + m2) v

5* 8 (-j) - 7* 4 ( i) = ( 5+7) v

v = - 2.33 i - 3.33 j

net velocity

v^2 = 2.33^2 + 3.33^2

v = 4.067 m/s

====

Comment before rate in case any doubt, will reply for sure.. goodluck

Add a comment
Know the answer?
Add Answer to:
Two blocks are sliding across a horizontal frictionless tabletop. Block A has a mass of 5...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks are sliding across a horizontal frictionless tabletop. Block A has a mass of 5...

    Two blocks are sliding across a horizontal frictionless tabletop. Block A has a mass of 5 kg, and it is sliding directly southward with a speed of 8 m/s. Block B has a mass of 7 kg, and it is sliding directly westward with a speed of 4 m/s. The blocks then collide and stick together. What is the speed of the new combined block after the collision? a) 2 m/s b) 4 m/s c) 6 m/s d) 8 m/s

  • 3. A block of mass 3m sits at rest on a horizontal, frictionless surface. Suddenly another...

    3. A block of mass 3m sits at rest on a horizontal, frictionless surface. Suddenly another block with mass m comes sliding in from the left with speed vo to the right. The blocks collide and stick together. Determine the speed of the blocks after the collision.

  • Block A of a mass 0.7 kg is sliding to the right at a speed of...

    Block A of a mass 0.7 kg is sliding to the right at a speed of 4.7 m/s while block B of mass 4.5kg is sliding to the right with a velocity of 1.2 m/s. The surface is frictionless for both blocks. If they collide perfectly elastically what is the speed of block A after the collision?

  • (10) A 5kg block is sliding along on a frictionless surface at a speed vA as...

    (10) A 5kg block is sliding along on a frictionless surface at a speed vA as it passes point A. If e block arrives at point B with a speed of 20 m/s, what was the speed of the block at point A? 10 m 20 m/s : 15 m 4. (20) Two masses slide towards each other across a frictionless surface. After the collision, the two masses do not stick together. The final velocity of the 15 kg block...

  • Blocks A and B are on a frictionless horizontal surface. Block A is to the left...

    Blocks A and B are on a frictionless horizontal surface. Block A is to the left of block B. Block A has a mass of 2.5 kg and B has a mass of 1.3 kg. Block A is struck from the left with a hammer. The average force of this impact is 65 N and lasts for 0.12 seconds. Block A slides to the right, strikes and sticks to block B. The two blocks then slide to the right together....

  • I need help on part G!!!!! Blocks A and B are on a frictionless horizontal surface....

    I need help on part G!!!!! Blocks A and B are on a frictionless horizontal surface. Block A is to the left of block B. Both blocks are initially at rest. Block A has a mass of 2.1 kg and B has a mass of 1.5 kg. Block A is struck from the left with a hammer. The average force of this impact is 210 N and lasts for 0.09 seconds. Block A slides to the right, strikes and sticks...

  • A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a...

    A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a speed 4.20 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 8.40 kg block recoils with a speed of 0.400 m/s. In the figure, the blocks are in contact for 0.200 s. What is the magnitude of the average force on the 8.40 kg block, while the two blocks are in contact?

  • Block A of mass 2.00 kg and block B of mass 3.00 kg slide on a...

    Block A of mass 2.00 kg and block B of mass 3.00 kg slide on a frictionless surface toward one another and collide. Before the collision, block A moves east with a speed of 3.00 m/s, block B moves south with a speed of 1.50 m/s. After the collision, block A moves 12 degrees west of south with a speed of 0.500 m/s. The two blocks do NOT stick together after the collision. (a) What is the magnitude and direction...

  • Two boxes are sliding to the right on a horizontal frictionless surface. Box 1 is trailing...

    Two boxes are sliding to the right on a horizontal frictionless surface. Box 1 is trailing box 2. Box 1 has a mass of 2 kg and a speed of 5 m/s, while box 2 has a mass of 4 kg and a speed of 3 m/s. Eventually, box 1 catches up to box 2 and experiences a completely inelastic collision with box 2. What is the speed of the two blocks after the collision?

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT