Question

A 0.10 kg cart (cart 1) moves with a speed of 0.40 m/s on a frictionless...

A 0.10 kg cart (cart 1) moves with a speed of 0.40 m/s on a frictionless air track and collides with a stationary cart (cart 2) whose mass is 0.30 kg. The two carts stick together after the collision. put 0 m/s for the velocity of (cart 2)

What is given?

What is the formula for momentum?

Is momentum conserved in this collision?

Is kinetic energy conserved in this collision?

What is the initial momentum of cart 1?

What is the initial momentum of cart 2?

What is the total initial momentum of the system?

What is the final total momentum of the system?

What is the final velocity of the cart 1?

What is the final velocity of cart 2?

What is the initial kinetic velocity of cart 1?

What is the initial kinetic energy of cart 2?

What is the total initial kinetic energy of the system?

What is the final kinetic energy of cart1?

What is the final kinetic energy of cart 2?

What is the final kinetic energy of the system?

Is kinetic energy conserved?

Please included the steps so I know how to do it. THANK YOU!

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 0.10 kg cart (cart 1) moves with a speed of 0.40 m/s on a frictionless...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 5.0-kg carl (cart 1) rolling cast on a level, frictionless track at 18.0 m/s, collides...

    A 5.0-kg carl (cart 1) rolling cast on a level, frictionless track at 18.0 m/s, collides with a stationary 4.0-kg cart (cart 2). After the collision, cart 1 is still rolling cast, but now at a speed of 2.0 m/s. (a) Assuming the total momentum of the two-cart system is conserved, calculate the final velocity of the second cart. (b) Before the collision, the system's total kinetic energy was 810 J. Calculate the total kinetic energy of the two-cart system...

  • A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an...

    A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an initially stationary cart of mass 0.40 kg. (A) If the carts stick together, what is their combined velocity immediately after the collision? (B) How much kinetic energy is lost in the collision?

  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

  • Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 45.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...

  • if an inelastic collision of two carts on a frictionless track collides, what is the momentum...

    if an inelastic collision of two carts on a frictionless track collides, what is the momentum of cart A and B, before and after the collision? cart A has a mass of .5025 kg and cart B has a mass of .5491 kg. carts A initial velocity is .5595 m/s then collides and sticks to cart B, which was initially at rest, with a final velocity of .1622 m/s.

  • 14) (Conservation of linear momentum) An air cart of mass m=1 kg and speed vo-Im's moves...

    14) (Conservation of linear momentum) An air cart of mass m=1 kg and speed vo-Im's moves toward second identical air cart that is at rest. When the carts collide, they stick together and move as one a) Using the conservation of linear momentum, calculate the velocity ve when the carts stick together (this is also the velocity of the center of mass after collision). b) Calculate the kinetic energy before and after collision. Is the collision elastic Without any calculation,...

  • PART 4: Collisions where the carts make contact but do not stick together 0.250 kg 0.250...

    PART 4: Collisions where the carts make contact but do not stick together 0.250 kg 0.250 kg 0.487 m/s 0.090 m/s Trial 7: In this part we will have the magnets of the blue Both carts same mass cart face the Velcro of the red cart. Because there are no magnets on the Velcro side of the red cart, we'll end up with the plastic of the blue cart hitting Total mass mb of blue cart the Velcro of the...

  • 2.5 m/s2.5 m/s Initial Velocity Initial Velocity 0 1 m/s 0 3 m/s Mass: 1 kg...

    2.5 m/s2.5 m/s Initial Velocity Initial Velocity 0 1 m/s 0 3 m/s Mass: 1 kg Mass: 3 kg Inelastic Case 2: Blue Cart Moving Slower than the Red Cart Set the initial blue cart velocity to less than the red cart velocity. Position the blue cart in the middle of the track. Use different mass values. Run the simulation and record the mass and velocity values. Before Collision After Collision m/s m/s m/s mRed kg m Blue kg Table...

  • A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...

    A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial x component of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.65 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the...

  • Let the red cart have a mass of 1 kg and an initial velocity of +10...

    Let the red cart have a mass of 1 kg and an initial velocity of +10 m/s, and the blue cart have a mass of 3 kg and an initial velocity of -10 m/s. If the two carts experience an Elastic Collision, what will be the final velocity of the blue cart? Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: x10 Answer units Question 5 (0.2 points) In which type of collision is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT