Question

A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an...

A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an initially stationary cart of mass 0.40 kg.

(A) If the carts stick together, what is their combined velocity immediately after the collision?

(B) How much kinetic energy is lost in the collision?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A) Apply law of conservation of momentum: 771111 ( 7711 +7712 ) V v nlu_ _ 0.2(3) B) The kinetic energy lost is: =1.0m/s 0210

Add a comment
Know the answer?
Add Answer to:
A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • HELP ASAP 1500kg car moving at 16 m/s suddenly collides with a stationary car of mass...

    HELP ASAP 1500kg car moving at 16 m/s suddenly collides with a stationary car of mass 1000 kg Problem3 1500-kg car moving at 16.00 m/s suddenly collides with a stationary car of mass 1000 kg a) What is the total initial momentum? b) If the two vehicles lock together, what is their combined velocity immediately after the collision? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the stationary car by the...

  • A 0.10 kg cart (cart 1) moves with a speed of 0.40 m/s on a frictionless...

    A 0.10 kg cart (cart 1) moves with a speed of 0.40 m/s on a frictionless air track and collides with a stationary cart (cart 2) whose mass is 0.30 kg. The two carts stick together after the collision. put 0 m/s for the velocity of (cart 2) What is given? What is the formula for momentum? Is momentum conserved in this collision? Is kinetic energy conserved in this collision? What is the initial momentum of cart 1? What is...

  • do all please. 1. A 20 Kg cart moving at 10 m/s collides with a 10...

    do all please. 1. A 20 Kg cart moving at 10 m/s collides with a 10 Kg cart moving at 20 m/ s. The two carts stick to each other after the collision. Calculate the final speed of the carts just after the collision if () They were moving in the same direction direction (i.e. thefaster bumped the slower from behind) (ii) They were moving at 90° respect to each other. (ii) They were moving at 30° respect to each...

  • (20%) Problem 5: A body of mass 1.8 kg and initial speed of 39 m/s collides with an initially res...

    only need part c (20%) Problem 5: A body of mass 1.8 kg and initial speed of 39 m/s collides with an initially resting body of mass 19 kg. The bodies stick together after the collision and continue moving (in the direction of the initially moving body). The motion takes place on a horizontal flat surface with negligible friction. 33% Part (a) Find the speed of the combined body immediately after the collision, in meters per second 3.375 Correct! 33%...

  • If a 0.25 kg cart moving to the right with a velocity of +0.31 m/s collides...

    If a 0.25 kg cart moving to the right with a velocity of +0.31 m/s collides inelastically with a 0.5 kg cart traveling to the left with a velocity of -0.22 m/s, what is the total momentum of the system before the collision?

  • A 5.0-kg carl (cart 1) rolling cast on a level, frictionless track at 18.0 m/s, collides...

    A 5.0-kg carl (cart 1) rolling cast on a level, frictionless track at 18.0 m/s, collides with a stationary 4.0-kg cart (cart 2). After the collision, cart 1 is still rolling cast, but now at a speed of 2.0 m/s. (a) Assuming the total momentum of the two-cart system is conserved, calculate the final velocity of the second cart. (b) Before the collision, the system's total kinetic energy was 810 J. Calculate the total kinetic energy of the two-cart system...

  • A 4.5-kg block moving at 2.0 m/s west on a frictionless surface collides totally inelastically with...

    A 4.5-kg block moving at 2.0 m/s west on a frictionless surface collides totally inelastically with a second 1.0-kg block traveling east at 2.0m/s. a) Determine the final velocity of the blocks. b)Determine the kinetic energy of the first block before the collision. c)Determine the kinetic energy of the second block before the collision. d)Determine the kinetic energy of the first block after the collision. e)Determine the kinetic energy of the second block after the collision.

  • A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...

    A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial x component of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.65 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT