Question

Two bodies, A and B each of mass 2.0 kg moving with velocities vA = (2.0i...

Two bodies, A and B each of mass 2.0 kg moving with velocities vA = (2.0i ˆ + 5.0j) m/s and vB = (1.0i ˆ – 5.0j) m/s collide and stick together. After the collision, what is the velocity of the composite object?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two bodies, A and B each of mass 2.0 kg moving with velocities vA = (2.0i...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two 2.0 kg bodies, A and B, collide. The velocities before the collision are (251101 m/s...

    Two 2.0 kg bodies, A and B, collide. The velocities before the collision are (251101 m/s and i, - (-331+50))m/s. After the collision, VA= (-5.01 +40)m/s. What are(a) the final velocity of Band (b) the change in the total kinetic energy

  • An object (A) of mass mAA = 27.5 kg is moving in a direction that makes...

    An object (A) of mass mAA = 27.5 kg is moving in a direction that makes angle of 56° south of east with a speed vAA = 5.00 m/s, while object (B) of mass mBB = 17.5 kg is moving due north with a speed vBB = 8.00 m/s. The two objects collide and stick together in a completely inelastic collision. Find the magnitude of the final velocity of the two-object system after the collision.

  • Two identical hockey pucks moving with initial velocities vA and vB collide as shown. If the...

    Two identical hockey pucks moving with initial velocities vA and vB collide as shown. If the coefficient of restitution is e = 0.79, determine the velocity of each puck just after impact. Also calculate the percentage loss n of system kinetic energy. Chapter 3, Problem 3/212 Incorrect Two identical hockey pucks moving withinitial velocities vA and vB collide as shown. If the coefficient of restitution is e = 0.79, determine the velocity of each puck just after impact. Also calculate...

  • An object (A) of mass m A = 29.0 kg is moving in a direction that...

    An object (A) of mass m A = 29.0 kg is moving in a direction that makes angle of 40° north of east with a speed v A = 5.10 m/s, while object (B) of mass m B = 17.5 kg is moving due north with a speed v B = 7.85 m/s. The two objects collide and stick together in a completely inelastic collision. Find the magnitude of the final velocity of the two-object system after the collision. An...

  • Two carts on an air track are moving toward each other. One has mass 2.0 kg...

    Two carts on an air track are moving toward each other. One has mass 2.0 kg and velocity -0.90 m/s, and the other has mass 3.0 kg but unknown speed. They collide in a totally inelastic collision, and move with velocity +1.2 m/s after the collision. What was the initial speed of the second cart (in m/s)?

  • Object A is moving due east, while object B is moving due north. They collide and...

    Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of mA = 18.0 kg and an initial velocity of v0A = 8.00 m/s, due east. Object B, however, has a mass of mB = 30.0 kg and an initial velocity of v0B = 5.00 m/s, due north. Find the magnitude of the final velocity of the two-object system...

  • 7. Two 1.80 kg bodies, A and B, collide. The velocities before the collision are and...

    7. Two 1.80 kg bodies, A and B, collide. The velocities before the collision are and . Immediately after the collision block A has . a. Wat is the velocity of block B immediately after the collision? b. What is the change in the total kinetic energy because of the collision? ((please make the solution readable ))

  • Object A is moving due east, while object B is moving due north. They collide and...

    Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of mA = 16.8 kg and an initial velocity of = 7.37 m/s, due east. Object B, however, has a mass of mB = 29.0 kg and an initial velocity of = 5.03 m/s, due north. Find the (a) magnitude and (b) direction of the total momentum of the...

  • Two particles of mass m1 = 2.0 kg and m2 = 2.6 kg undergo a one-dimensional...

    Two particles of mass m1 = 2.0 kg and m2 = 2.6 kg undergo a one-dimensional head-on collision as shown in the figure below. Their initial velocities along x are vii = 15 m/s and v2,--6.8 m/s. The two particles stick together after the collision (a completely inelastic collision. (Assume to the right as the positive direction.) mi m2 (a) Find the velocity after the collision. 2.6782 m/s (b) How much kinetic energy is lost in the collision? 153.907x

  • Two 1.8 kg bodies, A and B, collide. The velocities before the collision are A = (12 + 25) m/s and B = (-10 + 10.0) m/s....

    Two 1.8 kg bodies, A and B, collide. The velocities before the collision are A = (12 + 25) m/s and B = (-10 + 10.0) m/s. After the collision, 'A = (-1.0 + 22) m/s. (a) What is the final velocity of B? =   m/s (b) What is the change in the total kinetic energy (including sign)? J

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT