Question

The Dunc Gray velodrome, a bicycle race track in Sydney, Australia, has a radius of curvature...

The Dunc Gray velodrome, a bicycle race track in Sydney, Australia, has a radius of curvature of 85/π m in the turns. The maximum speed clocked there was 80.3 km/hr. (Draw force diagrams to help you analyze the system. Also, you can assume the bike+rider has mass m.) a. If the track were unbanked, what would the coefficient of static friction between the bike tires and track need to be for the bike to make such a turn without slipping? b. The turns are actually banked at 42o. What coefficient of static friction is needed for the bike to hold its line through the curve without slipping? c. If there were no friction on the track, what speed could the bike maintain through the turns without slipping?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The Dunc Gray velodrome, a bicycle race track in Sydney, Australia, has a radius of curvature...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 140 m, the banking angle is θ = 26°, and the coefficient of static friction is μs = 0.39. Find the minimum speed that the car can have without slipping. A car rounds a curve that is banked inward. The radius of curvature of the road is R 140 m, the banking angle is 26e, and the coefficient of static minimum...

  • A 960-kg race car can drive around an unbanked turn at a maximum speed of 45...

    A 960-kg race car can drive around an unbanked turn at a maximum speed of 45 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 13000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A 810-kg race car can drive around an unbanked turn at a maximum speed of 40...

    A 810-kg race car can drive around an unbanked turn at a maximum speed of 40 m/s without slipping. The turn has a radius of 120 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 9200 N on the car. What is the coefficient of static friction between the track and the car's tires? What would be the maximum speed if no downforce acted on the car?

  • A 860-kg race car can drive around an unbanked turn at a maximum speed of 44...

    A 860-kg race car can drive around an unbanked turn at a maximum speed of 44 m/s without slipping. The turn has a radius of 140 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A 900-kg race car can drive around an unbanked turn at a maximum speed of 42...

    A 900-kg race car can drive around an unbanked turn at a maximum speed of 42 m/s without slipping. The turn has a radius of 170 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 10000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 152 m, the banking angle is θ = 32°, and the coefficient of static friction is μs = 0.23. Find the minimum speed that the car can have without slipping.

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 142 m, the banking angle is θ = 30°, and the coefficient of static friction is μs = 0.32. Find the minimum speed that the car can have without slipping. I got 36.5196 m/s, which isn't correct.

  • The radius of curvature of a highway exit is r = 49.5 m. The surface of...

    The radius of curvature of a highway exit is r = 49.5 m. The surface of the exit road is horizontal, not banked What is the minimum required value of the coefficient of static friction between the tires of the car and the surface of the road so that the car can safely exit the highway at a constant speed of 42.0 km/h without sliding?

  • A flat (unbanked) curve on a highway has a radius of 250 m

    A flat (unbanked) curve on a highway has a radius of 250 m. A car successfully rounds the curve at a speed of 35 m/s but is on the verge of skidding out. a. Draw free body diagram of the car. b. If the coefficient of static friction between the car's tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve without slipping? c. Suppose the coefficient of friction were increased...

  • 3. A racecar drives along a circular track of radius 55m at a constant speed. The...

    3. A racecar drives along a circular track of radius 55m at a constant speed. The curve is banked 30 and the coefficient of static friction between the car and the tires is . ° μ .7 s = 0 a. Without knowing the speed of the car, is it possible to know what the direction of friction is? Explain your reasoning. b. What is the maximum speed the car can go without skidding?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT