Question

5. The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of...

5.

The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation

Kp=Kc(RT)Δn

where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TT is the absolute temperature, and ΔnΔn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction

N2(g)+3H2(g)⇌2NH3(g)

for which Δn=2−(1+3)=−2

For the reaction

3A(g)+2B(g)⇌C(g)

KcKc = 80.6 at a temperature of 351 ∘C

Calculate the value of Kp.

For the reaction

X(g)+3Y(g)⇌2Z(g)

Kp = 3.00×10−2 at a temperature of 83 ∘C.

Calculate the value of Kc

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
5. The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)ΔnKp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TT is the absolute temperature, and ΔnΔn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g)N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2Δn=2−(1+3)=−2. A For the reaction 3A(g)+3B(g)⇌C(g)3A(g)+3B(g)⇌C(g) KcKc...

  • The equilibrium constant, KcKcK_c, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, KcKcK_c, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKpK_p, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)ΔnKp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TTT is the absolute temperature, and ΔnΔnDelta n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g)N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2Δn=2−(1+3)=−2. A.) For the reaction 3A(g)+3B(g)⇌C(g)3A(g)+3B(g)⇌C(g)...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+3B(g)⇌C(g) Kc =...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 80.2...

  • 1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. Part A For the reaction 3A(g)+2B(g)⇌C(g)...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)?n where R=0.08206 L?atm/(K?mol), T is the absolute temperature, and ?n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)?2NH3(g) for which ?n=2?(1+3)=?2. Part A For the reaction 3A(g)+3B(g)?C(g) Kc...

  • , The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    , The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Part A Kp = K.(RT)An For the reaction 3A(g) + 2B(g) = C(g) where R=0.08206 L.atm/(K·mol), T is the absolute temperature, and An is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider...

  • Part A For the reaction The equilibrium constant, Kc is calculated using molar concentrations. For gaseous...

    Part A For the reaction The equilibrium constant, Kc is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp. is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation K = K (RT)An where R=0.08206 L-atın/K mol). T is the absolute temperature, and An is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N (g)...

  • Chapter 15 Homework Pressure-Based versus Concentration-Based Equilibrium Constants 11 of 41 Review I Constants I Periodic...

    Chapter 15 Homework Pressure-Based versus Concentration-Based Equilibrium Constants 11 of 41 Review I Constants I Periodic Table The equilibrium constant, K is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Part A For the reaction 3A(g)3B(g)C(g) Kp = Kc(RT)^n Ke 68.8 ta temperature of 273 C where R 0.08206 L atm/(K.mol), T is the absolute temperature, and...

  • For the equilibrium: 2 SO3(g) < = > O2(g) + 2 SO2(g) Kp = 0.269 at...

    For the equilibrium: 2 SO3(g) < = > O2(g) + 2 SO2(g) Kp = 0.269 at 625 oC What is Kc at this temperature? Kp = Kc[RT]Δn R = 0.08206 L-atm/mol K

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT