Question

A 1.50-kg block is pushed against a vertical wall by means of a spring (k =...

A 1.50-kg block is pushed against a vertical wall by means of a spring (k = 710 N/m). The coefficient of static friction between the block and the wall is 0.46. What is the minimum compression in the spring to prevent the block from slipping down?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 1.50-kg block is pushed against a vertical wall by means of a spring (k =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 10.A 1.00-kg block is pushed against a vertical wall by means of a spring (k =...

    10.A 1.00-kg block is pushed against a vertical wall by means of a spring (k = 890 N/m). The coefficient of static friction between the block and the wall is 0.38. What is the minimum compression in the spring to prevent the block from slipping down?

  • 1. An 8 kg block is pushed against a vertical wall by a horizontal force F....

    1. An 8 kg block is pushed against a vertical wall by a horizontal force F. If the coefficient of friction between the block and the wall is 0.30, find the minimum value for F that will prevent the block from slipping.

  • A 10 kg block is pushed against a vertical wall by a horizontal force of 100...

    A 10 kg block is pushed against a vertical wall by a horizontal force of 100 N as shown in the figure the coefficient of static friction between the block and the wall is 0.60 and the coefficient of kinetic friction is 0.40 which of the following statements is true if the block is initially at rest 1) The block slides down the wall with an acceleration of magnitude 3.8 m/s2 The block will slide down the wall because the...

  • A 40 kg block is pushed up against a spring as shown. The spring constant is...

    A 40 kg block is pushed up against a spring as shown. The spring constant is 400N/m and the coefficient of static friction is .25. How far must the spring be compressed in order to have enough force to overcome static friction and push the block into motion?

  • 1 You pin a 0.15 kg block against a vertical wall applying a horizontal force. If...

    1 You pin a 0.15 kg block against a vertical wall applying a horizontal force. If the coefficient of static friction between the block & the wall in 0.82, then what is the minimum magnitude of the applied force such that the block will not slide? a) 8.IN b) 8.4 N C) 679 d) 9.0N e) 9.3N

  • A 8.00 kg block is pressed against a vertical wall by a force (→F), as shown...

    A 8.00 kg block is pressed against a vertical wall by a force (→F), as shown in the figure below. The coefficient of static friction between the block and the wall is 0.31 and the directional angle θ for the force is 42.0°. Determine the magnitude of the force (→F) when the block is about to slide down the wall.

  • a 2 kg block A is pushed up against a spring compressing it a distance x=0.107...

    a 2 kg block A is pushed up against a spring compressing it a distance x=0.107 m. The block is then released from rest and slides down the 20° incline until it strikes a 1-kg sphere B that is suspended from a 1 m inextensible rope. The spring constant k=800 N/m, the coefficienct of friction between A and the ground is 0.2, the distance A slides from the unstretched length of the string is d=1.5, and the coefficient of restitution...

  • A 2.74 kg block is pushed 1.41 m up a vertical wall with a constant speed...

    A 2.74 kg block is pushed 1.41 m up a vertical wall with a constant speed by a constant force of magnitude F applied at an angle of 66.3 with the horizontal. The acceleration of gravity is 9.8 m/s2. If the coefficient of kinetic friction between the block and wall 0.415, find the work done by F. A 2.74 kg block is pushed 1.41 m up a vertical wall with a constant speed by a constant force of magnitude F...

  • A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m

    A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m, compressing it d= 0.250 m. When the block is released, it moves along a frictionless, horizontal surface and then up an incline with slope 37.0° and a coefficient of kinetic friction of 0.320. A)What is the speed of the block as it slides along the horizontal surface after having left the spring?B) How far does the object travel up the incline before...

  • A 20 N horizontal force F pushes a block weighing 3.0 N against a vertical wall....

    A 20 N horizontal force F pushes a block weighing 3.0 N against a vertical wall. The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. In unit-vector notation, what is the force exerted on the block by the wall? (___)N ihad + (____)N jhad A 20 N horizontal force F pushes a block weighing 3.0 N against a vertical wall....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT