Question

A 0.76-kg air cart is attached to a spring and allowed to oscillate. Part A If...

A 0.76-kg air cart is attached to a spring and allowed to oscillate. Part A If the displacement of the air cart from equilibrium is x=(10.0cm)cos[(2.00s−1)t+π], find the maximum kinetic energy of the cart in J. Find the maximum force exerted on it by the spring in N.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 0.76-kg air cart is attached to a spring and allowed to oscillate. Part A If...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.87-kg air cart is attached to a spring and allowed to oscillate. (10.0 cm)cos((2.00 s-4)t...

    A 0.87-kg air cart is attached to a spring and allowed to oscillate. (10.0 cm)cos((2.00 s-4)t + m), find the maximum kinetic If the displacement of the air cart from equilibrium is x = energy of the cart. Express your answer using two significant figures. 10 AED ? Kmax = J Submit Request Answer Part B Find the maximum force exerted on it by the spring. Express your answer using two significant figures. ΟΙ ΑΣΦ ? Fmax = N Submit...

  • A 0.502 kg air cart is attached to a spring and allowed to oscillate. The displacement...

    A 0.502 kg air cart is attached to a spring and allowed to oscillate. The displacement of the air cart from equilibrium is given by x = 11.2 cm·cos(1.88t + π), where t is in seconds. Calculate the maximum kinetic energy of the cart.

  • Problem 13.29 5 of 12 A 0.93-kg air cart is attached to a spring and allowed...

    Problem 13.29 5 of 12 A 0.93-kg air cart is attached to a spring and allowed to oscillate. Part A If the displacement of the air cart from equilibrium is (10.0 cm)cos(2.00 s-1)t+m], find the maximum kinetic energy of the cart. Express your answer using two significant figures. Kmax Submit Request Answer ? Part B Find the maximum force exerted on it by the spring Express your answer using two significant figures. Fmax Submit Request Answer

  • Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of s...

    Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of spring constant 2500 N/m as shown in the Figure below. The amplitude or maximum displacement X max is 7m. Calculate O a) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x...

  • A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below

    Part A: 10 points each (Questions 1-4) 1. A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below. The amplitude or maximum displacement Xmax is 5m. Calculatea) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x = 2 Cos(45t), where "x" displacement from equilibrium point in meters and "t"...

  • A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15...

    A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the cart is released from rest at position x = 8 cm from the equilibrium position. (a) What is the frequency of the oscillations of the object? (b) Determine the maximum speed of the cart. (c) Find the maximum acceleration of the mass (d) How much total energy does this oscillating...

  • please answer all parts, thank you. 2. A cart on a frictionless track is attached on...

    please answer all parts, thank you. 2. A cart on a frictionless track is attached on one side to a ideal spring. (The other side of the spring is fixed to the wall.) The cart has a mass of 1.20 kg. You compress the spring by 0.200 m and release the cart to oscillate at t = 0.00 s. The force needed to initially compress the spring is measured to be 10.0 N. (a) What is the angular frequency of...

  • A 0.76 kg mass is attached to a light spring with a force constant of 27.9...

    A 0.76 kg mass is attached to a light spring with a force constant of 27.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • Consider a spring of mass 1 Kg attached to a spring obeying Hooke's Law with spring...

    Consider a spring of mass 1 Kg attached to a spring obeying Hooke's Law with spring constant K Problem 4. (15 pts) Consider a spring of mass 1 kg attached to a spring obeying Hooke's Law with spring constant k N/m. Suppose an external force F(t) = 2 cos 3t is applied to the mass, and suppose the spring experiences no damping. Suppose the spring can be displaced 0.2 m by a 1.8 N force. If the spring is stretched...

  • A 0.750 kg air-track glider is attached to each end of the track by two coil...

    A 0.750 kg air-track glider is attached to each end of the track by two coil springs. It takes a horizontal force of 0.900 N to displace the glider to a new equilibrium position, x= 0.090 m. a) Find the effective spring constant of the system. b) The glider is now released from rest at x= 0.090 m. Find the maximum x-acceleration of the glider. c) Find the x-coordinate of the glider at time t= 0.550T, where T is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT