Question

A 2.63-kg physics cart starts from rest at the top of a 0.628-meter high incline. Determine...

A 2.63-kg physics cart starts from rest at the top of a 0.628-meter high incline. Determine the speed (in m/s) of the cart after it has rolled to a height of 0.147 meters. (Neglect the effect of friction forces.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 2.63-kg physics cart starts from rest at the top of a 0.628-meter high incline. Determine...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.5 kg cart starts from rest at the top of a ramp that is at...

    A 0.5 kg cart starts from rest at the top of a ramp that is at 30 degrees above the horizontal. At the bottom of the ramp is another 0.75 kg cart at rest. The 0.5 kg cart rolls down the ramp and collides with the 0.75 cart after which they become stuck together and move along the level ground at a speed of 3.1 m/s. At what height did the 0.5 kg cart start from? (Neglect friction)

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.50-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.80 s (a) Find the magnitude of the acceleration of the block. m/s (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude direction Select- (d) Find the speed of the block after it has slid 1.90 m m/s Need Help? tMasterTalk to a Tutor...

  • A SUU-kg block starts from rest at the top of a 30.00 incline and slides a...

    A SUU-kg block starts from rest at the top of a 30.00 incline and slides a distance of 2.10 m down the more (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude direction ---Select--- (d) Find the speed of the block after it has slid 2.10 m. m/s

  • A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides...

    A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides a distance of 2.10m down the incline in 1.80 seconds. a) Find the magnitude of the acceleration of the block. (_______ m/s2) b) Find the coefficient of kinetic friction between block and plane. c) Find the friction force acting on the block.        Magnitude ____________N        Direction: ______________ d) Find the speed of the block after it has slid 2.10m. (___________m/s)

  • 35 & 36 Back to 'Energy & Work 35 A 219 gram cart starts from rest...

    35 & 36 Back to 'Energy & Work 35 A 219 gram cart starts from rest and rolls down an inclined plane from a height of 0.678 m. Determine its speed at a helght of 0.387 m above the bottom of the Incline. 1.00 Question 36 A 3639 kg roller coaster car starts from rest at the top of a 35.1 m high track. Determine the speed of the car at the top of a loop that is 10.1 m...

  • ​A 3.70-kg block starts from rest at the top of a 30.09 incline and slides a distance of 1.90 m down the incline in 1.20 s.

    A 3.70-kg block starts from rest at the top of a 30.09 incline and slides a distance of 1.90 m down the incline in 1.20 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.90 m.

  • A 4 kg object starts from rest from the top of an rough 30o incline and...

    A 4 kg object starts from rest from the top of an rough 30o incline and slides 3.0 m down the incline in 2.0 s. Find the coefficient of friction between the block and the incline. A. 0.43 B. 0.25 C. 0.33 D. 0.90

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT