Question

an 8kb block starts from rest from the top of a plane, inclined at 40 degrees...

an 8kb block starts from rest from the top of a plane, inclined at 40 degrees with respect to the horizontal, and slides down at a constant acceleration. if the coefficient of kinetic friction between the block and the plane is 0.35, determine how far the block will travel in 3 seconds.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
an 8kb block starts from rest from the top of a plane, inclined at 40 degrees...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides...

    A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides a distance of 2.10m down the incline in 1.80 seconds. a) Find the magnitude of the acceleration of the block. (_______ m/s2) b) Find the coefficient of kinetic friction between block and plane. c) Find the friction force acting on the block.        Magnitude ____________N        Direction: ______________ d) Find the speed of the block after it has slid 2.10m. (___________m/s)

  • A block is placed on a plane that is inclined at 30° with respect to the...

    A block is placed on a plane that is inclined at 30° with respect to the horizontal. If the block slides down the plane with an acceleration of g/3, determine the coefficient of kinetic friction between the block and the plane

  • A block is released from rest at the top of an inclined 6.20 m long. The...

    A block is released from rest at the top of an inclined 6.20 m long. The angle of the incline with respect to the horizontal direction is and the coefficient of kinetic friction between the block and the surfaces (incline and horizontal) is . The block slides along the incline with constant velocity and continues moving along the horizontal surface until it comes to rest. Using the work-energy theorem, Determine: a) The speed reached by the block at the bottom...

  • A 3.00kg block starts from rest at the top of a 30.0 degree incline and slides...

    A 3.00kg block starts from rest at the top of a 30.0 degree incline and slides a distance of 2.00m down the incline in 1.50s. Find (a)the magnitude of the acceleration of the block, (b) the coefficient of kinetic friction between block and plane, (c) the friction force acting on the block and (d) the speed of the block after it has slid 2.00m.

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • A SUU-kg block starts from rest at the top of a 30.00 incline and slides a...

    A SUU-kg block starts from rest at the top of a 30.00 incline and slides a distance of 2.10 m down the more (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude direction ---Select--- (d) Find the speed of the block after it has slid 2.10 m. m/s

  • 4. A block is placed on a plane inclined at 35 relative to the horizontal. If...

    4. A block is placed on a plane inclined at 35 relative to the horizontal. If the block slides down the plane with an acceleration of magnitude g/3, determine the coefficient of kinetic friction between block and plane? (a) 0.331 0.29% (d)0.041

  • A skier starts from rest at the top of a hill that is inclined at 10.0°...

    A skier starts from rest at the top of a hill that is inclined at 10.0° with respect to the horizontal. The hillside is 250 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?

  • A skier starts from rest at the top of a hill that is inclined at 9.8°...

    A skier starts from rest at the top of a hill that is inclined at 9.8° with respect to the horizontal. The hillside is 240 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest? m

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT