Question

Which of the following pairs of masses would have the slowest acceleration on the Atwood's machine?...

Which of the following pairs of masses would have the slowest acceleration on the Atwood's machine? a. 100 grams and 95 grams b. 100 grams and 50 grams c. 100 grams and 5 grams d.100 grams and 0 grams e. 0 grams and 5 grams

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Which of the following pairs of masses would have the slowest acceleration on the Atwood's machine?...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. In a classical Atwood's machine setup (like this lab), what are the forces that will...

    1. In a classical Atwood's machine setup (like this lab), what are the forces that will be discussed? a)The weight of the masses on each pulley and the tension in the string b) The weight of the masses on each pulley. c) The Mtotal times g and the tension on the string. d) The masses on each pulley and the tension in the string 2. What's the total mass of the system in our case of the Atwood's machine? a)...

  • An Atwood's machine consists of two masses, mi and m2, which are connected by a massless...

    An Atwood's machine consists of two masses, mi and m2, which are connected by a massless inelastic cord that passes over a pulley. If the pulley has radius R and moment of inertia I about its axle, determine the acceleration of the masses mi and m2, and compare to the situation in which the moment of inertia of the pulley is ignored. [Hint: The tensions FTI and FT2 are not necessarily equal.] T2

  • (Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 9.00...

    (Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 9.00 kg and 2.00 kg, respectively, the moment of inertia of the wheel about its axis be 0.220 kg. m², and the radius of the wheel be 0.120 m. There is no slipping between the cord and the surface of the wheel. Part A Find the magnitude of the linear acceleration of block A. Part B Find the magnitude of linear acceleration of block B. Part C Find the magnitude of...

  • illustrates an Atwood's machine. Let the masses of blocks A and B be 6.00 kg and...

    illustrates an Atwood's machine. Let the masses of blocks A and B be 6.00 kg and 2.50 kg , respectively, the moment of inertia of the wheel about its axis be 0.220 kgâ‹…m2 , and the radius of the wheel be 0.120 m . There is no slipping between the cord and the surface of the wheel. part a: Part A Part complete Find the magnitude of angular acceleration of the wheel C . α =…. rad/s^2 part b: Find...

  • Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached...

    Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached by a cord running over a pulley as in the figure below. The pulley is id cylinder with mass M-7.30 kg and radiusr 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? Score: 1 out of Comment: (b) What is the acceleration...

  • An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running...

    An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M 8.50 kg and radius 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has not been graded yet (b) What is the acceleration...

  • please give the answer for this questions Machine on Laboratory Experiment "Newton's Second Law: Atwood's in...

    please give the answer for this questions Machine on Laboratory Experiment "Newton's Second Law: Atwood's in NOTE: We can leave all masses in grams (&) since all calculations involve ratios of masses. DATA TABLE Trial 1 Trial 2 Trial 3 Trial 4 Mass of pulley M, g 00.049 Mass of the first weight holder 51.339 Mass of the weight, placed in the weight holder 1 dm Total ascending masS m Mum ascendingmassmt(g) |ち1.331|71339|91.339|111.33i 1339 Mass of the second weight holder3G...

  • I need questions 8-11. Thank you. comp Atwood's Machine Equipment Qty Equipment 1 Mass and Hanger...

    I need questions 8-11. Thank you. comp Atwood's Machine Equipment Qty Equipment 1 Mass and Hanger Set 1 Photogate with Pully Photogate with Pully 1 Universal Table Clamn 1 Large Rod 1 Small Rod 1 Double rod Clamp I 1 String Part Number ME-8979 ME-6838A ME-9376B ME-8736 ME-8977 ME-9873 Background Newton's 2 Law (NSL) states that the acceleration a mass experiences is proportional to the net force applied to it, and inversely proportional to its inertial mass la t )....

  • 5. An Atwood machine consists of two masses mi and m2 (with mi > m2) attached...

    5. An Atwood machine consists of two masses mi and m2 (with mi > m2) attached to the ends of a light string that passes over a light, frictionless pulley Problem Setup1 FBD ty m2 mi 1-png When the masses are released, the mass mi is easily shown to accelerate down with an acceleration mi m2 mi +m2 Suppose that and m 2 are measured as mn = 100 ± 1 and mg = 50 ± 1, both in grams....

  • which of the following values of alpha would cause exponential smoothing to respond the slowest to...

    which of the following values of alpha would cause exponential smoothing to respond the slowest to forecast errors? a. 0.10 b. 0.02 c. 0.50 d. 1 e. can not be determined

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT