Question

A solid sphere of mass M and radius R sits on a an incline of angle...

A solid sphere of mass M and radius R sits on a an incline of angle θ, when it is let go it rolls down-hill without slipping at total vertical distance of h. At the bottom of the hill the ball moves onto a horizontal surface and enters into a completely elastic collision with a stationary block of height 2R and mass 2M. Find the speed of the block right after the collision.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A solid sphere of mass M and radius R sits on a an incline of angle...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sphere with a mass 'm' that is solid rolls up an incline that has angle...

    A sphere with a mass 'm' that is solid rolls up an incline that has angle theta with an initial speed of Vo in the shown position. The rough surface has static friction μ that prevents the sphere from slipping as it rolls up this incline. Part A: Calculate the maximum distance "D" that the sphere can go up this incline using newton's laws Part B: Calculate the maximum distance "D" that the sphere can go up this incline using...

  • A solid homogeneous sphere of mass M = 4.70 kg is released from rest at the...

    A solid homogeneous sphere of mass M = 4.70 kg is released from rest at the top of an incline of height H=1.21 m and rolls without slipping to the bottom. The ramp is at an angle of θ = 27.7o to the horizontal. a) Calculate the speed of the sphere's CM at the bottom of the incline.​ b) Determine the rotational kinetic energy of the sphere at the bottom of the incline.

  • 1) A solid ball of mass M and radius R rolls without slipping down a hill...

    1) A solid ball of mass M and radius R rolls without slipping down a hill with slope tan θ. (That is θ is the angle of the hill relative to the horizontal direction.) What is the static frictional force acting on it? It is possible to solve this question in a fairly simple way using two ingredients: a) As derived in the worksheet when an object of moment of inertia I, mass M and radius R starts at rest...

  • If a solid sphere with mass 12 kg and radius 0.1 m rolls without slipping with...

    If a solid sphere with mass 12 kg and radius 0.1 m rolls without slipping with a constant angular speed of 50 rad/s: (SHOW WORK). How far does it go up an incline of 42° if it continues to not slip? How far does it go up the same incline if instead it starts slipping? (i.e no friction between the ball and the incline)

  • A uniform, solid sphere of radius 5.00 cm and mass 1.75 kgstarts with a purely translational...

    A uniform, solid sphere of radius 5.00 cm and mass 1.75 kgstarts with a purely translational speed of 3.25 m/s at the top of an inclined plane. The surface of the incline is 1.75 m long, and is tilted at an angle of 24.0∘with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2at the bottom of the ramp.

  • A uniform solid sphere with a mass M = 2.0 kg and a radius R =...

    A uniform solid sphere with a mass M = 2.0 kg and a radius R = 0.10 m is set into motion with an angular speed ωo = 70 rad/s. At t = 0 the sphere is dropped a short distance (without bouncing) onto a horizontal surface. There is friction between the sphere and the surface. Find (a) the angular speed of rotation when the sphere finally rolls without slipping at time t = T and (b) the amount of...

  • A uniform, solid sphere of radius 5.00 cm and mass 4.75 kg starts with a purely...

    A uniform, solid sphere of radius 5.00 cm and mass 4.75 kg starts with a purely translational speed of 1.75 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 26.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=

  • A uniform, solid sphere of radius 4.00 cm and mass 2.25 kg starts with a purely...

    A uniform, solid sphere of radius 4.00 cm and mass 2.25 kg starts with a purely translational speed of 2.25 m/s at the top of an inclined plane. The surface of the incline is 1.75 m long, and is tilted at an angle of 33.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp.

  • A uniform, solid sphere of radius 4.25 cm and mass 2.00 kg starts with a purely...

    A uniform, solid sphere of radius 4.25 cm and mass 2.00 kg starts with a purely translational speed of 1.00 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 22.0" with respect to the horizontal Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speedy at the bottom of the ramp.v2 = _______ m/s

  • A uniform, solid sphere of radius 4.00 cm and mass 4.50 kg starts with a purely...

    A uniform, solid sphere of radius 4.00 cm and mass 4.50 kg starts with a purely translational speed of 2.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 33.0" with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v2 at the bottom of the ramp. v2 = _______ m/s

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT