Question

Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging...

Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging lens with a focal length of 10.0 cm while the seconds lens is a diverging lends with a focal length of 13.0. If an object is placed 4.0 cm to the left of the converging lens, determine the magnification of the two lenses combined.
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two lenses are placed a distance of 20.0 cm apart. The leftmost lens is a converging...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two lenses are placed 13 cm apart. The first lens is a converging lens with focal...

    Two lenses are placed 13 cm apart. The first lens is a converging lens with focal length 4cm. The second lens is a diverging lens with focal length 9cm. If an object is placed at a distance of 13 cm from the first lens, A) What is the position of the image? B) What is the image type (virtual or real)? C) What is the magnification?

  • Part A Two converging lenses are placed 35.5 cm apart. The focal length of the lens...

    Part A Two converging lenses are placed 35.5 cm apart. The focal length of the lens on the right is 19.5 cm and the focal length of the lens on the left is 13.0 cm. An object is placed to the left of the 13.0 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 13.0 cm focal-length lens is the original object? A2 -...

  • 12) Two lenses are placed 13 cm apart. The first lens is a converging lens with...

    12) Two lenses are placed 13 cm apart. The first lens is a converging lens with focal length 4cm. The second lens is a diverging lens with focal length 9cm. If an object is placed at a distance of 13 cm from the first lens, A) What is the position of the image? (6 points) B) What is the image type (virtual or real? (2 points) C) What is the magnification? (2 points)

  • 12) Two lenses are placed 13 cm apart. The first lens is a converging lens with...

    12) Two lenses are placed 13 cm apart. The first lens is a converging lens with focal length 4cm. The second lens is a diverging lens with focal length 9cm. If an object is placed at a distance of 13 cm from the first lens, A) What is the position of the image? (6 points) B) What is the image type (virtual or real)? (2 points) C) What is the magnification? (2 points)

  • 12) Two lenses are placed 13 cm apart. The first lens is a converging lens with...

    12) Two lenses are placed 13 cm apart. The first lens is a converging lens with focal length 4cm. The second lens is a diverging lens with focal length 9cm. If an object is placed at a distance of 13 cm from the first lens, A) What is the position of the image? (6 points) B) What is the image type (virtual or real)? (2 points) C) What is the magnification? (2 points)

  • Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0...

    Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0 cm are placed 20 cm apart. An object is placed 60 cm in front of converging lens. Determine (a) the position and (b) the magnification of the final image formed (c) sketch a ray diagram for this system.

  • Two lenses are placed 12 cm apart as shown in the figure. The converging lens has...

    Two lenses are placed 12 cm apart as shown in the figure. The converging lens has a focal length of 20 cm and the diverging lens has a focal length of � 10 cm. An object is located 50 cm in front of the converging lens as shown. Where along the principle axis is the location of the image formed by only the converging lens? Answer between the two lenses at the diverging lens to the left of the converging...

  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

  • Two converging lenses are placed 20 cm apart. An object is placed on the left of...

    Two converging lenses are placed 20 cm apart. An object is placed on the left of the first lens, at a distance of 30 cm. The first lens has a focal point of 10 cm and the second lens has a focal length of 20 cm. a) Using a ray diagram determine the type of image formed by the first lens. b) Calculate the position of the image formed by the first lens. c) Find the magnification of the image...

  • A converging lens is placed at x = 0, a distance d = 11.5 cm to...

    A converging lens is placed at x = 0, a distance d = 11.5 cm to the left of a diverging lens as in the figure below (where F and Flocate the focal points for the converging and the diverging lens, respectively). An object is located at x = -1.60 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 4.50 cm and -8.10 cm, respectively, HINT FO to ro (a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT