Question

A 0.75m long instrument tube has two open sides as a standing sound wave moves through...

A 0.75m long instrument tube has two open sides as a standing sound wave moves through it (speed of sound is 343 m/s). You count 4 nodes in the tube.

(a) Find the wavelength and frequency.
(b) You suddenly close both ends of the tube. The number of nodes doesn't change, but their positions do What is different about the air pressure and displacement? How did the wavelength and frequency change?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 0.75m long instrument tube has two open sides as a standing sound wave moves through...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. The standing wave is formed in a tube of length L which is open at...

    6. The standing wave is formed in a tube of length L which is open at both ends. The shape of this standing wave is shown in the picture, whereas the frequency of the 5th harmonic is 450 Hz. Speed of sound is 343 m/s. Find (a) length L of the tube, and (b) harmonic’s number n; (c) wavelength, and (d) frequency of the wave shown in the picture.

  • A tube, open at the left end and closed at the right, has standing-wave patterns at...

    A tube, open at the left end and closed at the right, has standing-wave patterns at frequencies of 198 Hz and 330 Hz. The speed of sound in air is 343 m/s. The lowest two harmonics (normal modes) that these two standing waves could be are m = and The frequency of the fundamental (m = 1) is Hz. The wavelength of the fundamental mode is m. The tube is m long

  • Help please with full explanation. For like and comment. 4. Consider a horizontal tube filled with...

    Help please with full explanation. For like and comment. 4. Consider a horizontal tube filled with air which is closed at one end. By blowing across the open end the fundamental standing wave of the air column inside the tube is produced. [You can assume the speed of sound in air is 344ms-1] (a) Sketch the tube, clearly labelling all of the pressure and displacement nodes (b) If the length of the air column in the tube is 32.0 cm,...

  • A closed tube of length 0.60 m is used to create a standing sound wave. Assume...

    A closed tube of length 0.60 m is used to create a standing sound wave. Assume that the standing wave created in the tube has the second longest wavelength possible (out of all possible standing waves that fit in the tube). If this tube is then placed on a truck that moves away (at a speed of 90.0 km/hr) from a stationary observer, what frequency does the observer hear?

  • The first harmonic of a series created by a standing air wave in a tube open...

    The first harmonic of a series created by a standing air wave in a tube open at both ends is 250 Hz. If the length of the tube is 66.0 cm, calculate the speed of sound of the air. Give your answer in m/s to 3 sf.

  • The third overtone (fourth harmonic) resonates in a 1.2m long open-close tube where the speed of...

    The third overtone (fourth harmonic) resonates in a 1.2m long open-close tube where the speed of sound in air is 343 m/s. The number of antinodes in the standing wave pattern is

  • Problem 1: A sound wave of the form s = Smax cos(kx - wt+ 0) travels...

    Problem 1: A sound wave of the form s = Smax cos(kx - wt+ 0) travels at 343 m/s through air in a long horizontal tube. At one instant, air molecule A at x = 2.000 m is at its maximum positive displacement of 6.00 nm and air molecule B at x = 2.070 m is at a positive displacement of 2.00 nm. All the molecules between A and B are at intermediate displacements. (a) What is the wavelength of...

  • Date WS4 Sound Standing Waves I. A tuning fork is set into vibeation above a vertical open tube i...

    help Date WS4 Sound Standing Waves I. A tuning fork is set into vibeation above a vertical open tube illed with water as shown. The wat level is allowed to drop slowly. As it does so, the air in the tube above the water level is heard to monate with the nning fork when thedstance tom the ope to he water level is at25m and again at 0.375 m. If the speed of sound in air is 343what is the...

  • 1. [1pt] Consider standing sound waves in a tube. Answer true (T) or false (F) to...

    1. [1pt] Consider standing sound waves in a tube. Answer true (T) or false (F) to the following statements; e.g., enter FFF. The highest pressure and lowest pressure in the standing wave both occur where the particle displacement is the smallest. The frequency of the standing wave increases as the harmonic mode increases. For a pipe closed at one end, the pressure varies more at the closed end than at the open end.

  • 2. [1pt] A standing sound wave in a hollow tube is shown below What is the...

    2. [1pt] A standing sound wave in a hollow tube is shown below What is the harmonic number for this mode of oscillation? You only have 2 tries! Answer Incorrect, ONE try left!! Submit All Answers Last Answer: S 3. [lpt] If the frequency of this standing wave is 278 Hz, what is the fundamental frequency of the tube? Use 336 m/s for the phase speed of sound in air. Submit All Answers Answer

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT