Question

An object is placed 45 cm to the left of a converging lens of focal length...

An object is placed 45 cm to the left of a converging lens of focal length 17 cm. A diverging lens of focal length −29 cm is located 11 cm to the right of the first lens. (Consider the lenses as thin lenses).
a) Where is the final image with respect to the second lens?cm
b) What is the linear magnification of the final image?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An object is placed 45 cm to the left of a converging lens of focal length...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

  • An object 2.00 cm high is placed 45.3 cm to the left of a converging lens...

    An object 2.00 cm high is placed 45.3 cm to the left of a converging lens having a focal length of 40.3 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) final position cm magnification...

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • 11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of...

    11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position Take the image formed by the first lens to be the object for the second lens and apply the lens equation to each lens to locate the final image. cm 8.442...

  • ​A converging lens is placed at x 0, a distance d 11.5 cm to the left of a diverging lens

    A converging lens is placed at x 0, a distance d 11.5 cm to the left of a diverging lens as in the figure below (where F and Fo locate the focal points for the converging and the diverging lens, respectively). An object is located et x-1.90 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 4.50 cm and -8.60 cm, respectively. (a) Determine the x-location in cm of the final...

  • A converging lens of focal length 8.130 cm is 20.1 cm to the left of a...

    A converging lens of focal length 8.130 cm is 20.1 cm to the left of a diverging lens of focal length -6.49 cm . A coin is placed 17.9 cm to the right of the diverging lens. Find the location of the coin's final image. Find the magnification of the coin's final image.

  • Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10...

    Now, a diverging lens with focal length having a magnitude of 20 cm is placed 10 cm to the right of the converging lens in problem that has a 2 cm tall object placed 12 cm to the left of a converging lens with focal length of magnitude 15 cm. Determine the location of the final image formed by both lenses (in relation to the diverging lens) and the magnification of the final image. State whether the final image is...

  • A converging lens with a focal length of 4.2 cm is located 20.7 cm to the...

    A converging lens with a focal length of 4.2 cm is located 20.7 cm to the left of a diverging lens having a focal length of -11.5 cm. If an object is located 9.2 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? Submit Answer Tries 0/10 What is the magnification? Submit Answer Tries 0/10 Also determine, with...

  • part 1: A converging lens (f = 10.8 cm) is located 32.0 cm to the left...

    part 1: A converging lens (f = 10.8 cm) is located 32.0 cm to the left of a diverging lens (f = -7.80 cm). A postage stamp is placed 43.9 cm to the left of the converging lens. (a) Locate the final image of the stamp relative to the diverging lens. (b) Find the overall magnification. part 2: Two identical diverging lenses are separated by 16 cm. The focal length of each lens is -5.1 cm. An object is located...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT