Question

A solid uniform sphere and a uniform spherical shell, both having the same mass (m) and...

A solid uniform sphere and a uniform spherical shell, both having the same mass (m) and radius (R), rolls without slipping along a horizontal surface at a speed v. They then encounter a hill that rises at an angle (theta) above the horizontal. (I of the sphere = 2/5mR^2) and (I of the spherical shell = 2/3mR^2) (a) How high will the sphere roll before coming to rest? (b) How high will the spherical shell roll before coming to rest? (c) Which one rolls further up the hill?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A solid uniform sphere and a uniform spherical shell, both having the same mass (m) and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Can you show all steps to solve the question? Thank you 2. A solid uniform sphere...

    Can you show all steps to solve the question? Thank you 2. A solid uniform sphere and a uniform spherical shell, both having the same mass m and radius R, roll without slipping down a hill that rises at an angle ? above the horizontal. Both spheres start from rest at the same vertical height h 10.0 m. Given lem mR2 and sphere shelt S) () mR2. You may use energy (a) How fast is the solid sphere moving at...

  • 2) Released from rest at the same height, a thin spherical shell (lamR3) and solid sphere...

    2) Released from rest at the same height, a thin spherical shell (lamR3) and solid sphere AshremR) of the same mass m and radius R roll without slipping down an incline through the same vertical drop H (see figure below). Each is moving horizontally as it leaves the ramp. The spherical shell hits the ground a horizontal distance L from the end of the ramp and the solid sphere hits the ground a distance L 'from the end of the...

  • A uniform solid sphere with a mass of M = 360 grams and a radius R...

    A uniform solid sphere with a mass of M = 360 grams and a radius R = 18.0 cm is rolling without slipping on a horizontal surface at a constant speed of 2.50 m/s. It then encounters a ramp inclined at an angle of 17.0 degrees with the horizontal, and proceeds to roll without slipping up the ramp. Use g = 10.0 m/s2. How far does the sphere travel up the ramp (measure the distance traveled along the incline) before...

  • A uniform solid sphere rolls along a horizontal frictionless surface at 10 m/s and makes a...

    A uniform solid sphere rolls along a horizontal frictionless surface at 10 m/s and makes a smooth transition onto a frictionless incline having an angle of 300. How far up the incline does the sphere roll when it comes to a momentary stop? Note for a sphere I= 2/5Mr2, where M is the mass of the sphere and r is the radius of the sphere.

  • A uniform solid sphere with a mass M = 2.0 kg and a radius R =...

    A uniform solid sphere with a mass M = 2.0 kg and a radius R = 0.10 m is set into motion with an angular speed ωo = 70 rad/s. At t = 0 the sphere is dropped a short distance (without bouncing) onto a horizontal surface. There is friction between the sphere and the surface. Find (a) the angular speed of rotation when the sphere finally rolls without slipping at time t = T and (b) the amount of...

  • Exercise 6: A solid sphere and a spherical shell are on top of a hill which...

    Exercise 6: A solid sphere and a spherical shell are on top of a hill which is 3.60m tall. They are each 4.50kg. Suppose they roll down the hill. At what speed will each sphere be moving at the bottom of the hill? Here I refer to the speed of the center of mass as in class. You also have to do the algebra, as in class, to eliminate the R and ω. Also, you have to remember that the...

  • A uniform hollow spherical shell of mass M and radius R rolls without slipping down an...

    A uniform hollow spherical shell of mass M and radius R rolls without slipping down an inclined plane. The plane has a length of L and is at an angle (theta). What is its speed at the bottom?

  • 4. A uniform solid sphere and hoop each with equaled masses and radii are rolling without...

    4. A uniform solid sphere and hoop each with equaled masses and radii are rolling without slipping on a horizontal surface at a constant speed of 5,mis. They then encounter a ramp, and proceed to roll without slipping up the ramp. Determine the maximum heights reached by the sphere and the hoop on the ramp before they turn around.

  • (11 points) A uniform solid sphere of mass m and radius r is placed inside a...

    (11 points) A uniform solid sphere of mass m and radius r is placed inside a hemispherical bowl of radius R. The sphere is released from rest at an angle theta and rolls without slipping. (a) (6 points) Using Conservation of Energy, to find an expression for the angular speed of the sphere when it reaches the lowest point of the bowl. (b) (6 points) Find the magnitude of the centripetal acceleration of the center of mass of the sphere...

  • Problem 4 A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coeffi...

    Problem 4 A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coefficient of friction (this means that the frictional force is equal to the normal force multiplied by u). The acceleration due to gravity is g. At time t 0, the bal is struck impulsively on center, causing it to go instantaneously from rest to initial rotation horizontal speed vo with a no (a) Find the horizontal speed, and the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT