Question

H2(g)+I2(g)⇌2HI(g) For the above reaction, Kc=55.3 at 700 K. In a 2.00-L flask containing an equilibrium...

H2(g)+I2(g)⇌2HI(g)

For the above reaction, Kc=55.3 at 700 K. In a 2.00-L flask containing an equilibrium mixture of the three gases, there are 0.053 g of H2 and 4.39 g of I2.

What is the mass of HI in the flask?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
H2(g)+I2(g)⇌2HI(g) For the above reaction, Kc=55.3 at 700 K. In a 2.00-L flask containing an equilibrium...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For the reaction H2(g)+I2(g)⇌2HI(g), Kc= 55.3 at 700 K. In a 2.00-L flask containing an equilibrium...

    For the reaction H2(g)+I2(g)⇌2HI(g), Kc= 55.3 at 700 K. In a 2.00-L flask containing an equilibrium mixture of the three gases, there are 0.053 g H2 and 4.38 g I2. What is the mass of HI in the flask? Express your answer to two significant figures and include the appropriate units.

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g)...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) ---------->2HI(g) 1) Calculate the equilibrium concentrations of reactants and product when 0.309 moles of H2 and 0.309 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = M? [I2] = M? [HI] = M? 2.The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K: PCl5(g)------->PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a...

  • The equilibrium constant for the reaction: H2(g) + I2(g) <--> 2HI(g) is 54 at 700 K....

    The equilibrium constant for the reaction: H2(g) + I2(g) <--> 2HI(g) is 54 at 700 K. A mixture of H2, I2 and HI, each at 0.020 M, was introduced into a container at 700 K. Which of the following is true? At equilibrium, [H2] = [I2] = [HI]. No net change occurs because the system is at equilibrium. The reaction proceeds to the left producing more H2(g) and I2(g). The reaction proceeds to the right producing more HI(g). At equilibrium,...

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ----> H2(g)...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ----> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.306 M HI, 4.10×10-2 M H2 and 4.10×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.208 mol of HI(g) is added to the flask? [HI]   = ______ M [H2]   = ______ M [I2]   = ______M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.319 M HI, 4.27×10-2 M H2 & 4.27×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.224 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M please help me!

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ⇌H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ⇌H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.320 M HI,   4.29×10-2 M H2 and 4.29×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.233 mol of HI(g) is added to the flask? [HI] = ___M [H2] = ___ M [I2] = ___M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.329 M HI, 4.41×10-2 M H2 and 4.41×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.54×10-2 mol of H2(g) is added to the flask? [HI] = M [H2] = M [I2] = M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.302 M HI, 4.05×10-2 M H2 and 4.05×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.203 mol of HI(g) is added to the flask?

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.316 M HI, 4.24×10-2 M H2 and 4.24×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.21×10-2 mol of I2(g) is added to the flask?

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) goes to...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) goes to H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.308 M HI, 4.14×10-2 M H2 and 4.14×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.67×10-2 mol of I2(g) is added to the flask? [HI] = __M [H2] = __M [I2] = __M

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT