Question

1a.). 486.1-nm and 434.0-nm light passes through two vertical slits producing an interference pattern on a...

1a.). 486.1-nm and 434.0-nm light passes through two vertical slits producing an interference pattern on a screen that is 125cm away. if the first order fringes (m=1) are 0.88 mm apart, what must be the slit separation d?

1b.) An appliance rated at 44W is plugged into a 115V line. How much current is drawn? if the appliance were an ohmic device what will be its resistance in omega?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1a.). 486.1-nm and 434.0-nm light passes through two vertical slits producing an interference pattern on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • Problem Statement Light of wavelength 519 nm passes through two slits. In the interference pattern on...

    Problem Statement Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Visual Representation • Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen.

  • Coherent light of wavelength 548 nm passes through two slits. In the resulting interference pattern on...

    Coherent light of wavelength 548 nm passes through two slits. In the resulting interference pattern on a screen 4.6 m away, adjacent bright fringes are 5.60 mm apart. What is the separation between the 2nd and the 3rd order maxima for light with a wavelength of 650 nm?

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Please show equations and steps

  • Wave Optics 5 Problem Statement Light of wavelength 519 nm passes through two slits. In the...

    Wave Optics 5 Problem Statement Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Visual Representation • Draw the slits Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen....

  • Wave Optics 5 Problem Statement Light of wavelength 519 nm passes through two slits. In the...

    Wave Optics 5 Problem Statement Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Visual Representation • Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the...

  • Light with a wavelength of 520 nm passes through 0.25 mm slits that are 1.0 mm...

    Light with a wavelength of 520 nm passes through 0.25 mm slits that are 1.0 mm apart. An interference pattern is seen on a screen that is 2.5 m away. How far from the center is the first dark fringe due to the slit width? How far from the center are the bright fringes that fall within this distance?

  • Light of wavelength 440 nm passes through two slits of equal width, yielding an interference pattern...

    Light of wavelength 440 nm passes through two slits of equal width, yielding an interference pattern whose graph of intensity versus angular position theta is shown in the figure. (a) Calculate the width of each slit. Explain your method. (b) Calculate the distance between the two slits. Explain your reasoning. (c) Suppose the width of each of the slits is doubled, but the separation of the two slits does not change. Sketch the new intensity pattern on the graph below....

  • Light from a laser passes through a pair of slits and forms a pattern on a...

    Light from a laser passes through a pair of slits and forms a pattern on a screen 4 meters from the slits. The slits are 50?m wide and are 0.1mm apart. a) If the wavelength of the laser is 650 nm, sketch the pattern made on the screen. b) Calculate the spacing between fringes and the width of the central maximum. c) A wedge of material is slipped in front of one slit until the central bright fringe disappears (a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT