Question

A 2.44 μF capacitor and a 6.96 μF capacitor are connected in series across a 19.0...

A 2.44 μF capacitor and a 6.96 μF capacitor are connected in series across a 19.0 V battery. What voltage would be required to charge a parallel combination of the same two capacitors to the same total energy?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that a 2.44 μF capacitor and a 6.96 μF capacitor are connected in series across a 19.0 V battery.

For Series connection,

-----------

Energy,

================

Now capacitors are connected in parallel

For Parallel connection,

-------

Energy,

ANSWER:

================

Add a comment
Know the answer?
Add Answer to:
A 2.44 μF capacitor and a 6.96 μF capacitor are connected in series across a 19.0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two capacitors,C1 = 19.0 μF andC2 = 45.0 μF, are connected in series,and...

    Two capacitors,C1 = 19.0 μF andC2 = 45.0 μF, are connected in series, and a 21.0-V battery is connected across them.(a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor.equivalent capacitance    13.3 μFtotal energy stored    2.93e-3  J(b) Find the energy stored in each individual capacitor.(c) Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always be true, or does it depend on the number of capacitors and their...

  • Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and...

    Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and a 21.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance     μF total energy stored     J (b) Find the energy stored in each individual capacitor. energy stored in C1     J energy stored in C2     J Show that the sum of these two energies is the same as the energy found in part (a)....

  • Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them.

    Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor(b) Find the energy stored in each individual capacitor(c) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? Which capacitor stores more energy in this situation, C1 or C2?  

  • Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference.

    Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference. Part A What is the charge on the 4.9 μF capacitor? Part B What is the total energy stored in all three capacitors?Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are the reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor...

  • Three capacitors having capacitances of 9.0 μF, 8.7 μF. and 5.0 μF are connected in series across a 32- V potential difference.

    Three capacitors having capacitances of 9.0 μF, 8.7 μF. and 5.0 μF are connected in series across a 32- V potential difference.Part A What is the charge on the 5.0 μF capacitor? Part B What is the total energy stored in all three capacitors? Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel...

  • Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and...

    Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and a 9.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance ______ μF total energy stored _______ J (b) Find the energy stored in each individual capacitor. energy stored in C1 ______ J energy stored in C2 ______ J Show that the sum of these two energies is the same as the energy...

  • Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and...

    Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and a 24.0-V battery is connected across them (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance total energy stored (b) Find the energy stored in each individual capacitor. energy stored in C energy stored in C2 Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always...

  • A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a...

    A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a 7.0-V battery. A) Calculate the potential difference across each capacitor B) Calculate the charge on each capacitor C) Calculate the potential difference across each capacitor assuming the two capacitors are in parallel. D) Calculate the charge on each capacitor assuming the two capacitors are in parallel. a. Calculate the potential difference across each capacitor. b .Calculate the charge on each capasitor. c. Calculate the...

  • A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a...

    A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a 17-V battery. Part A: Calculate the potential difference across each capacitor. V1,V2= ?V Part B: Calculate the charge on each capacitor. Q1,Q2= ?C Part C: Calculate the potential difference across each capacitor assuming the two capacitors are in parallel. V1,V2= ?V Part D: Calculate the charge on each capacitor assuming the two capacitors are in parallel.Q1,Q2 = ?C Part D: Calculate the charge on...

  • Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a...

    Two capacitors, C1 26.0 μF and C2 = 30.0 μF, are connected in series, and a 6.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance 13.93 total energy stored 25e-5 (b) Find the energy stored in each individual capacitor. energy stored in C1 energy stored in C2 1.340-4X 83.58 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each ste care...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT