Question

A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is...

A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6410 N/m. A bullet of mass m = 9.30 g and velocity v→ of magnitude 600 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the amplitude of the resulting simple harmonic motion.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A)

Using law of conservation of momentum,

Velocity, v = mu/(m + M)

v = (0.0093 x 600)/(0.0093 + 6.20) = 0.90 m/s

B)

Using law of conservation of energy,

0.5 (m + M) v^2 = 0.5 kx^2

X = v sqrt((m + M)/k)

X = 0.028 m

Comment in case any doubt please rate my answer...

Add a comment
Know the answer?
Add Answer to:
A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5890 N/m. A bullet of mass m = 9.30 g and velocity v of magnitude 650 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible is embedded, determine (a) the speed of the block immediately after the collision and (b) the amplitude of...

  • A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6390 N/m. A bullet of mass m = 8.20 g and velocity of magnitude 710 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...

  • A block of mass M = 1.94 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 1.94 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 110 N/m. A bullet of mass m = 4.7 g and velocity of magnitude 810 m/s strikes and is embedded in the block (Fig. See below). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5490 N/m. A bullet of mass m = 9.90 g and velocity v of magnitude 670 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A 21.0kg block at rest on a horizontal frictionless table is connected to the wall via...

    A 21.0kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring constant k=34.0N/m. A 3.90×10-2kg bullet travelling with a speed of 550m/s embeds itself in the block. What is the amplitude of the resulting simple harmonic motion? Recall that the amplitude is the maximum displacement from equilibrium. 14. 1pt A 21.0kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring...

  • A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to...

    A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to a spring (k = 750 N/m). The system is initially at rest and is in equilibrium MI Second DIOCK (M=1.5 kg) approaches with a speed of 3.5 m/s and undergoes all inelastic collision with the first block (i.e.. they stick together after the collision). (a) What is the amplitude of the resulting simple harmonic motion (in cm)? (b) What is the angular frequency (w)...

  • 1) A 12.3 kg particle is undergoing simple harmonic motion with an amplitude of 1.86 mm....

    1) A 12.3 kg particle is undergoing simple harmonic motion with an amplitude of 1.86 mm. The maximum acceleration experienced by the particle is 7.93 km/s2. (a) Find the period of the motion. (b) What is the maximum speed of the particle? (c) Calculate the total mechanical energy of this simple harmonic oscillator. 2) The orbit of the Moon around the Earth as projected along a diameter can be viewed as simple harmonic motion. Calculate the effective force constant k...

  • Item 1 1 of 4 A block of wood connected to a horizontal spring is at...

    Item 1 1 of 4 A block of wood connected to a horizontal spring is at rest on a frictionless floor. The mass of the block is 5kg and the spring constant is 125 N/m. A bullet of mass 50g is fired at the block with horizontal velocity of 25 m/s. The bullet gets embedded in the block after hitting it. The block (with the bullet embedded in it) undergoes simple harmonic oscillation as a result of this collision Part...

  • A 33.0 kg block at rest on a horizontal frictionless table is connected to the wall...

    A 33.0 kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring constant k= 25.0 N/m. A 0.028 kg bullet travelling with a speed of 540.0 m/s embeds itself in the block. What is the amplitude of the resulting simple harmonic motion? Recall that the amplitude is the maximum displacement from equilibrium. (in m) A: 5.66×10-2 B: 8.21×10-2 C: 1.19×10-1 D: 1.73×10-1 E: 2.50×10-1 F: 3.63×10-1 G: 5.26×10-1 H: 7.63×10-1...

  • A bullet with mass 25g and initial horizontal velocity 320m=s strikes a block of mass 2kg...

    A bullet with mass 25g and initial horizontal velocity 320m=s strikes a block of mass 2kg that rests on a frictionless surface and is attached to one end of a spring. The bullet becomes embedded in the block. The other end of the spring is attached to the wall. The impact compresss the spring a maximum distance of 25cm. After the impact, the block moves in simple harmonic motion. 1. What is the frequency of the oscillation? 2. Sketch graphs...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT