Question

A 33.0 kg block at rest on a horizontal frictionless table is connected to the wall...

A 33.0 kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring constant k= 25.0 N/m. A 0.028 kg bullet travelling with a speed of 540.0 m/s embeds itself in the block. What is the amplitude of the resulting simple harmonic motion? Recall that the amplitude is the maximum displacement from equilibrium. (in m)

A: 5.66×10-2
B: 8.21×10-2
C: 1.19×10-1
D: 1.73×10-1
E: 2.50×10-1
F: 3.63×10-1
G: 5.26×10-1
H: 7.63×10-1

I got 0.3721m but it’s not one of the options?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 33.0 kg block at rest on a horizontal frictionless table is connected to the wall...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 21.0kg block at rest on a horizontal frictionless table is connected to the wall via...

    A 21.0kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring constant k=34.0N/m. A 3.90×10-2kg bullet travelling with a speed of 550m/s embeds itself in the block. What is the amplitude of the resulting simple harmonic motion? Recall that the amplitude is the maximum displacement from equilibrium. 14. 1pt A 21.0kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring...

  • A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6390 N/m. A bullet of mass m = 8.20 g and velocity of magnitude 710 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...

  • A block of mass M = 1.94 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 1.94 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 110 N/m. A bullet of mass m = 4.7 g and velocity of magnitude 810 m/s strikes and is embedded in the block (Fig. See below). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6410 N/m. A bullet of mass m = 9.30 g and velocity v→ of magnitude 600 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5890 N/m. A bullet of mass m = 9.30 g and velocity v of magnitude 650 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible is embedded, determine (a) the speed of the block immediately after the collision and (b) the amplitude of...

  • A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5490 N/m. A bullet of mass m = 9.90 g and velocity v of magnitude 670 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block...

    A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block at rest on a frictionless surface. . The block is attached to a spring with k = 90.0 N/mFind the period.Find the amplitude of the subsequent simple harmonic motion.Find the total energy of the bullet+block+spring system before the bullet enters the block.Find the total energy of the bullet+block+spring system after the bullet enters the block.

  • A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached...

    A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached to an ideal spring. Calibration shows that a force of 0.75 N is required to compress the spring 0.25 cm. A 8.0-g rifle bullet is fired and embeds itself in the block, compressing the spring 15.0 cm before rebounding. (a) What was the speed of the block just after impact? (b) What was the initial bullet speed?

  • A 6.85 g bullet traveling at 520 m/s embeds itself in a 1.79 kg wooden block...

    A 6.85 g bullet traveling at 520 m/s embeds itself in a 1.79 kg wooden block at rest on a frictionless surface. The block is attached to a spring with k = 82.0 N/m. A. Find the period. Express your answer with the appropriate units. B. Find the amplitude of the subsequent simple harmonic motion. Express your answer with the appropriate units.

  • A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to...

    A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to a spring (k = 750 N/m). The system is initially at rest and is in equilibrium MI Second DIOCK (M=1.5 kg) approaches with a speed of 3.5 m/s and undergoes all inelastic collision with the first block (i.e.. they stick together after the collision). (a) What is the amplitude of the resulting simple harmonic motion (in cm)? (b) What is the angular frequency (w)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT