Question

An ideal gas has initial volume of 0.380 m3 and pressure of 9.80 ✕ 104 Pa....

An ideal gas has initial volume of 0.380 m3 and pressure of 9.80 ✕ 104 Pa. (a) If the initial temperature is 284 K, find the number of moles of gas in the system. (b) If the gas is heated at constant volume to 387 K, what is the final pressure?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The number of moles and final temperature

Add a comment
Know the answer?
Add Answer to:
An ideal gas has initial volume of 0.380 m3 and pressure of 9.80 ✕ 104 Pa....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • During a compression at a constant pressure of 290 Pa, the volume of an ideal gas...

    During a compression at a constant pressure of 290 Pa, the volume of an ideal gas decreases from 0.85 m3 to 0.12 m3. The initial temperature is 390 K, and the gas loses 160 J as heat. What are (a) the change in the internal energy of the gas and (b) the final temperature of the gas?

  • An ideal monatomic gas is contained in a vessel of constant volume 0.470 m3. The initial...

    An ideal monatomic gas is contained in a vessel of constant volume 0.470 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 30.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. mol (b) Find the specific...

  • Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume...

    Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume 2.10 m3. While undergoing an adiabatic expansion, the gas does 1780 J of work. What is the final pressure of the gas after the expansion? (kPa)

  • A fixed amount of ideal gas is held in a sealed container. The initial volume, pressure,...

    A fixed amount of ideal gas is held in a sealed container. The initial volume, pressure, and temperature are [recall that 1L = 10−3 m3, and 1atm = 101,300Pa] V = 40 L P = 2.5 atm T = 400 K. (a) Compute the new temperature if the pressure is reduced to P = 1.0atm while the volume is held constant. (b) Compute the new volume if the temperature increases to 600K while the pressure is reduced to 2.0atm. (c)...

  • 4-/6.25 points My Notes SerCP10 12.P.023. An ideal monatomic gas is contained in a vessel of constant volume 0.260 m3....

    4-/6.25 points My Notes SerCP10 12.P.023. An ideal monatomic gas is contained in a vessel of constant volume 0.260 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 22.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the...

  • Ideal Gas: Please show all work and explain (a) An ideal gas expands adiabatically from a...

    Ideal Gas: Please show all work and explain (a) An ideal gas expands adiabatically from a volume of 2.2 × 10-3 m3 to 3.2 × 10-3 m3. If the initial pressure and temperature were 5 pressure Pa temperature (b) In an isothermal process, an ideal gas expands from a volume of 2.2 10-3 m3 to 3.2 10-3 m3. If the initial pressure and temperature were 5.0 x 105 Pa and 280 K, respectively, what are the final pressure (in Pa)...

  • If a gas is compressed isentropically such that: P1 = initial pressure in Pa P2 =...

    If a gas is compressed isentropically such that: P1 = initial pressure in Pa P2 = final pressure in Pa V1 = initial volume in m3 V2 = final volume in m3 T1 = initial temperature in K T2 = final temperature in K, then prove the following relationship: ?1?−1?1 = ?2?−1?2

  • 1) An ideal gas at 16.8 °C and a pressure of 2.04 x 105 Pa occupies...

    1) An ideal gas at 16.8 °C and a pressure of 2.04 x 105 Pa occupies a volume of 2.67 m3. (a) How many moles of gas are present? (b) If the volume is raised to 5.22 m3 and the temperature raised to 32.8 °C, what will be the pressure of the gas? 2) Two moles of an ideal gas are placed in a container whose volume is 7.9 x 10-3 m3. The absolute pressure of the gas is 5.4...

  • Suppose the temperature of 4.33 L of ideal gas drops from 350 K to 275 K...

    Suppose the temperature of 4.33 L of ideal gas drops from 350 K to 275 K (a) If the volume remains constant and the initial pressure is atmospheric pressure, find the final pressure What are you using for the initial pressure? What are your units? Is the volume constant or changing? It might help to reread the problem description. Pa (b) Find the number of moles of gas mol

  • A system of ideal gas has an initial pressure of 114 kPa and occupies a volume...

    A system of ideal gas has an initial pressure of 114 kPa and occupies a volume of 6.00 liters. Doubling the system’s absolute temperature by means of a constant-pressure process would require an amount of work W. Instead, you decide to double the absolute temperature by carrying out two processes in sequence, a constant-pressure process followed by a constant-volume process. In this case, the total work done in the two-process sequence is W/2. Calculate the final pressure of the system....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT