Question

A 12 kg block is pressed against a spring with spring constant k = 1424 N/m....

A 12 kg block is pressed against a spring with spring constant k = 1424 N/m. The spring is
normally 65 cm long but the block is pressed against it to compress the spring until it is only
27 cm long. The block is then released and the spring pushes it forward onto a frictionless
surface.
a)How fast is the block moving immediately after it leaves the spring?

b) The mass then slides across a 2.5 m wide surface with coefficient of kinetic friction  k = 0.26.
If the block crosses the friction section in 0.8 s, how much power does it take to cross the
friction section?

c) The block then encounters another spring. It compresses that spring 18 cm before
coming to a stop. What is the spring constant of the second spring?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hope it helps...pls do upvote

Add a comment
Know the answer?
Add Answer to:
A 12 kg block is pressed against a spring with spring constant k = 1424 N/m....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 2 A 0.5-kg block is pressed a distance d against a horizontal spring of constant...

    Problem 2 A 0.5-kg block is pressed a distance d against a horizontal spring of constant 800 N/m. The block sits on a frictionless horizontal surface When the block is released from rest, it slides along the surface, its speed is 1.6 m/s when it leaves the spring (a) Calculate distance d. 4 cm Suppose that the sliding block (speed 1.6 m/s) crosses a rough section of the surface. The leugth of the section is 1m. The block has a...

  • A 12-kg block is pressed against a spring (spring constant 620 N/mN/m ), compressing it some...

    A 12-kg block is pressed against a spring (spring constant 620 N/mN/m ), compressing it some distance. The block is released from rest and slides across a track as shown in (Figure 1). While most of the track is frictionless, there is a 55-cm section of track that has a coefficient of friction with the block of 0.3. A bit further on, the track ascends into a hill that is 40-cm tall. Part A: What is the minimum compression of...

  • Problem 5 A spring with a spring constant k=200 N/m is used as a launcher for...

    Problem 5 A spring with a spring constant k=200 N/m is used as a launcher for a small block whose mass is 10 g. The block is placed against the compressed spring in a horizontal arrangement on a smooth horizontal surface. The spring, with the block, is compressed 5 cm and then released. a) Find the speed of the block just as it leaves the spring b) The block encounters a rough surface as it leaves the spring. How much...

  • eleration along the surface. 0.85 m/s l the crate. 29 N Problem 2 A 0.5-kg block...

    eleration along the surface. 0.85 m/s l the crate. 29 N Problem 2 A 0.5-kg block is pressed a distance d against ahorizontal spring of constant 800 N/m. The block sits on a frictionless horizontal surface When the block is released from rest, it slides along the surface, its speed is 1.6 m/s when it leaves the spring a) Calculate distance d. 4 cm Suppose that the sliding block (speed 1.6 m/s) crosses a rough section of the surface. The...

  • A 195 g block is pressed against a spring of force constant 1.50 kN/m until the...

    A 195 g block is pressed against a spring of force constant 1.50 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline (in m) the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic...

  • A 195 g block is pressed against a spring of force constant 1.60 kN/m until the block compresses the spring 10.0 cm.

    A 195 g block is pressed against a spring of force constant 1.60 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline in m) the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block (b) if the coefficient of kinetic friction is 0.360...

  • A 2.9 kg block slides with a speed of 1.1 m/s on a frictionless, horizontal surface...

    A 2.9 kg block slides with a speed of 1.1 m/s on a frictionless, horizontal surface until it encounters a spring. (a) If the block compresses the spring 5.2 cm before coming to rest, what is the force constant of the spring? (b) What initial speed should the block have if it is to compress the spring by 1.3 cm?

  • A 2-kg block is pushed against a spring with spring-constant k 512 N/m, compressing it 0.25 m

    A 2-kg block is pushed against a spring with spring-constant k 512 N/m, compressing it 0.25 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 53.1° (a) What is the speed of the block as it slides along the horizontal surface after having left the spring? (b) How far does the block travel up the incline before starting to slide back down?

  • A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m

    A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m, compressing it d= 0.250 m. When the block is released, it moves along a frictionless, horizontal surface and then up an incline with slope 37.0° and a coefficient of kinetic friction of 0.320. A)What is the speed of the block as it slides along the horizontal surface after having left the spring?B) How far does the object travel up the incline before...

  • A block of mass 3.40 kg is placed against a horizontal spring of constant k =...

    A block of mass 3.40 kg is placed against a horizontal spring of constant k = 865 N/m and pushed so the spring compresses by 0.0600 m. (a) What is the elastic potential energy of the block-spring system (in J)? (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT