Question

Consider the system of two blocks and a spring. The horizontal surface is frictionless, but there...

Consider the system of two blocks and a spring. The horizontal surface is frictionless, but there is static friction between the two blocks. The spring has force constant k = 150 N/m. The masses of the two blocks are m = 0.500 kg and M = 6.00 kg. You set the blocks into motion by releasing block M with the spring stretched a distance d from equilibrium. You start with small values of d, and then repeat with successively larger values. For small values of d, the blocks move together in SHM. But for larger values of d the top block slips relative to the bottom block when the bottom block is released. What is the period of the motion of the two blocks when d is small enough to have no slipping?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider the system of two blocks and a spring. The horizontal surface is frictionless, but there...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k...

    A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k =2000N/m. The blocks mass is 10.0kg. The mass of the spring is negligible. The spring is stretched out a distance of 20.0 cm and released. The block undergoes simple harmonic motion with a phase constantf= 1.35 rad. a)  determine the timeit takes for the spring to be compressed 6.50cm after it was released b) determine the acceleration of the black at t = 1.50 s.

  • A block with mass M rests on a frictionless surface and is connected to a horizontal...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (Fig. P14.68). A second block with mass m rests on top of the first block. The coefficient of static friction between the blocks is ms. Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. Suppose the two blocks are...

  • 3. Two blocks of masses m and 3m are placed on a frictionless horizontal surface. A light spring is attached to the mor...

    3. Two blocks of masses m and 3m are placed on a frictionless horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together and connected with a cord. The spring has a spring constant k, and while the blocks are pushed together, the spring is compressed over a distance d. At a moment in time t-0, the cord is cut, the spring expunds, and the blocks are sliding away from each other....

  • A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k...

    A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k =2000N/m. The mass of the block is 14.5 kg. The spring is stretched out a distance of 20.0 cm and released. The block undergoes simple harmonic motion with a phase constant φ=?. a)  if the velocity of the block is -2.00 m/s at t= 0.150 s, what is the phase constant? b) determine the acceleration of the block at t = 0.150 s. c) what...

  • A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring,...

    A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring, with a spring constant of 100 N/m is attached to the wall and to the block. A second block with m(2)=0.50 kg is placed on top of the first block. The first block is gently pulled to a position x = + A and released from rest. There is a coefficient of static friction of 0.45 between the two blocks. (a) What is the...

  • 8.67 Blocks A (mass 6.00 kg) and B (mass 14.00 kg, to the right of A)...

    8.67 Blocks A (mass 6.00 kg) and B (mass 14.00 kg, to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is headon, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A. Find...

  • Two blocks with masses 0.90 kg and 3.90 kg are placed on a horizontal frictionless surface....

    Two blocks with masses 0.90 kg and 3.90 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After the blocks lose contact with the spring ends, the 3.90 kg mass has a speed of 1.00 m/s. The combined final kinetic energies of the blocks was originally stored in the spring.  Determine how much potential energy was...

  • 4. Two blocks with masses 10.0 kg and 15.0 kg are placed on a horizontal frictionless...

    4. Two blocks with masses 10.0 kg and 15.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then release from rest. After blocks have lost contact with the spring, the 10.0 kg mass has velocity, v = 4.0 î m/s. (a) How much potential energy was stored in the spring before the blocks were released? (b) What is the...

  • Blocks A (mass 3.00 kg ) and B (mass8.00 kg ) move on a frictionless, horizontal...

    Blocks A (mass 3.00 kg ) and B (mass8.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 3.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A. A. Find the maximum energy stored in the spring...

  • The two blocks (m-12 kg and M-88 kg) in the figure are not attached to each...

    The two blocks (m-12 kg and M-88 kg) in the figure are not attached to each Other. The oemeient of static friction between the blocks is·s·0.36, but the surface beneath the larger block is frictionless. What is the minimum magnitude of the horizontal force F required to keep the smaller block from slipping down the larger block? ar rictionless Number Units

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT