Question

A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k...

A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k =2000N/m. The blocks mass is 10.0kg. The mass of the spring is negligible. The spring is stretched out a distance of 20.0 cm and released. The block undergoes simple harmonic motion with a phase constantf= 1.35 rad.

a)  determine the timeit takes for the spring to be compressed 6.50cm after it was released

b) determine the acceleration of the black at t = 1.50 s.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k...

    A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k =2000N/m. The mass of the block is 14.5 kg. The spring is stretched out a distance of 20.0 cm and released. The block undergoes simple harmonic motion with a phase constant φ=?. a)  if the velocity of the block is -2.00 m/s at t= 0.150 s, what is the phase constant? b) determine the acceleration of the block at t = 0.150 s. c) what...

  • A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. By...

    A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. By stretching the block and then releasing it, the block-spring system undergoes simple harmonic motion. The block’s position as a function of time is given by                        x = 45.0 cm cos(3pi(t) - pi/3) a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle e. Determine the time when the position x = -18.0cm f. Determine the...

  • 1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface....

    1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. The spring constant is 280N/m. The block-spring system undergoes simple harmonic motion. At a time t=0s, the position of the block x= +A and its velocity vx= 0. At t=2.50s the position x = -12.0 cm No credit awarded without correct units! a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle d. Write the...

  • A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to...

    A horizontal mass-spring system consists of a block (m=1.5 kg) on a frictionless to connected to a spring (k = 750 N/m). The system is initially at rest and is in equilibrium MI Second DIOCK (M=1.5 kg) approaches with a speed of 3.5 m/s and undergoes all inelastic collision with the first block (i.e.. they stick together after the collision). (a) What is the amplitude of the resulting simple harmonic motion (in cm)? (b) What is the angular frequency (w)...

  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • A small block of mass 4.2 kg sits on top of a block of mass 19.8...

    A small block of mass 4.2 kg sits on top of a block of mass 19.8 kg. The lower block is attached to a spring with spring constant 248 N/m and can slide on a horizontal frictionless surface. The coefficient of friction between the blocks is 0.4. What is the maximum possible amplitude of simple harmonic motion, xm, of the spring-blocks system if no slippage is to occur between the blocks?

  • A 0.60 kg block rests on a frictionless horizontal countertop, where it is attached to a...

    A 0.60 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 18.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a)What is the block's maximum speed (in m/s) after it is...

  • A mass rests on a frictionless surface and is attached to the end of a spring....

    A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring is stretched... I would appreciate to have a detailed explanation for the last one. Thank you in advance. A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring Is stretched. The mass Is then released, and It starts oscillating back and forth...

  • A 21.0kg block at rest on a horizontal frictionless air track is connected to the wall...

    A 21.0kg block at rest on a horizontal frictionless air track is connected to the wall via a spring. The equilibrium position of the mass is defined to be at x=0. Somebody pushes the mass to the position x= 0.350m, then lets go. The mass undergoes simple harmonic motion with a period of 5.00s. What is the position of the mass 3.950s after the mass is released? Consider the same mass and spring discussed in the previous problem. What is...

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT