Question

A block of mass m = 6.14 kg is attached to a spring with spring constant...

A block of mass

m = 6.14 kg

is attached to a spring with spring constant

k = 1682 N/m

and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.)


(b) Where is the block located 3.24 s after it is released? (Give the displacement from the equilibrium. Include the sign of the value in your answer.)
m

(c) What is the velocity of the mass at that time? (Indicate the direction with the sign of your answer.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

here,

mass ,m = 6.14 kg

spring constant , K = 1682 N/m

amplitude ,A = 0.135 m

the angular frequency , w = sqrt(K/m)

w = sqrt(1682/6.14) = 16.55 rad/s

the displacement , x(t) = A * cos(w*t)

b)

at t = 3.24 s

x(3.24) = 0.135 * cos(16.55 * 3.24)

x(3.24) = - 0.13 m

c)

let the velocity of mass at this time be v

using conservation of energy

0.5 *K * A^2 + 0.5 * K * x^2 + 0.5 * m * v^2

1682 * ( 0.135^2 - 0.13^2) = 6.14 * v^2

solving for v

v= 0.54 m/s

the velocity of mass is 0.54 m/s

Add a comment
Know the answer?
Add Answer to:
A block of mass m = 6.14 kg is attached to a spring with spring constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 6.04 kg is attached to a spring with spring constant...

    A block of mass m = 6.04 kg is attached to a spring with spring constant k = 1572 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.170 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (a) What is the frequency of this oscillation? 2.57 Hz (b) Where is...

  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • A block of mass m = 0.59 kg is attached to a spring withforce constant...

    A block of mass m = 0.59 kg is attached to a spring with force constant 128 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.)        (a) At that instant, find the force on the block.          N        (b) At that...

  • A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...

    A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 9.8 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "x=0m." The drawing also shows a small bottle located 0.080 m to...

  • A 0.60 kg block rests on a frictionless horizontal countertop, where it is attached to a...

    A 0.60 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 18.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a)What is the block's maximum speed (in m/s) after it is...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 4.55 x 10^2 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position x, = 5.65 cm to the right of equilibrium and released from rest. Find the the work required to stretch the spring. Find the speed the block has as it passes through equilibrium.

  • A block of mass 1.20 kg is attached to a horizontal spring that has force constant...

    A block of mass 1.20 kg is attached to a horizontal spring that has force constant k = 300 N/m. The block moves on a horizontal frictionless surface. The maximum speed of the block during its motion is 5 m/s. What is the amplitude A of the simple harmonic motion of the block?

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 5.0 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled ''x = 0 m.'' The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.65 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position Xi = 5.45 cm to the right of equilibrium and released from rest. x=0 x=x; (a) Find the the work required to stretch the spring (b) Find the speed the block has as it passes through equilibrium m/s

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion,...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 7.2 rad/s. The drawing indicates the position of the block when the spring is unstrained. This position is labeled "x = 0 m." The drawing also shows a small bottle located 0.079 m to the right of this position. The block is pulled to the right, stretching the spring...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT