Question

A block of mass m = 6.04 kg is attached to a spring with spring constant k = 1572 N/m and rests on a frictionless surface. Th

0 0
Add a comment Improve this question Transcribed image text
Answer #1

KE 1592 N/m m= 604 kg A = 0.170 m Last (9) f= 2.57 Hz To 172) 2= A Som/wtfnh B) at, t = 3.24 s x= 0.170 Sm( 20x2.52x 3.24 + 1

Add a comment
Know the answer?
Add Answer to:
A block of mass m = 6.04 kg is attached to a spring with spring constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

  • A block of mass m = 0.59 kg is attached to a spring withforce constant...

    A block of mass m = 0.59 kg is attached to a spring with force constant 128 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.)        (a) At that instant, find the force on the block.          N        (b) At that...

  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • A mass m = 1 kg is attached to a spring with constant k = 9...

    A mass m = 1 kg is attached to a spring with constant k = 9 N/m and a dashpot with variable damping coefficient c. If the mass is to be pulled 8 m beyond its equilibrium (stretching the spring) and released with zero velocity, what value of c ensures that the mass will pass through the equilibrium position and compress the spring exactly 1 m before reversing direction?

  • A mass m = 1 1 kg is attached to a spring with constant k =...

    A mass m = 1 1 kg is attached to a spring with constant k = 4 N/m and a dashpot with variable damping coefficient c. If the mass is to be pulled 7 m beyond its equilibrium (stretching the spring) and released with zero velocity, what value of c ensures that the mass will pass through the equilibrium position and compress the spring exactly 1 m before reversing direction? C =

  • A block of mass 0.427 kg is hung from a vertical spring and allowed to reach...

    A block of mass 0.427 kg is hung from a vertical spring and allowed to reach equilibrium at rest. As a result the spring is stretched by 0.612 m. Find the spring constant Number N/m The block is then pulled down an additional 0.317 m and released from rest. Assuming no damping, what is its period of oscillation? Number How high above the point of release does the block reach as it oscillates? Number In

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 4.55 x 10^2 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position x, = 5.65 cm to the right of equilibrium and released from rest. Find the the work required to stretch the spring. Find the speed the block has as it passes through equilibrium.

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.65 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position Xi = 5.45 cm to the right of equilibrium and released from rest. x=0 x=x; (a) Find the the work required to stretch the spring (b) Find the speed the block has as it passes through equilibrium m/s

  • A block with mass 5.0 kg is attached to a horizontal spring with spring constant 300.0...

    A block with mass 5.0 kg is attached to a horizontal spring with spring constant 300.0 N/m. If the block is initially pulled out a distance (x) cm and then released, and its velocity when it first reaches the equilibrium point is 0.51 m/s, find x.

  • -A 1.800kg mass is attached to a spring with a spring constant K= 227.1 n/m. the...

    -A 1.800kg mass is attached to a spring with a spring constant K= 227.1 n/m. the block is released from rest with the spring stretched by 13.20cm. a) The frequency of the resulting oscillation is? b) The max speed of the block is?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT