Question

A block with mass 5.0 kg is attached to a horizontal spring with spring constant 300.0...

A block with mass 5.0 kg is attached to a horizontal spring with spring constant 300.0 N/m.

If the block is initially pulled out a distance (x) cm and then released, and its velocity when it first reaches the equilibrium point is 0.51 m/s, find x.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: given mass of block m s 4s= spriag Censtant k= 300 N/m speed of hlock ad peibriom pusiton is stretch x cm trem the

Add a comment
Know the answer?
Add Answer to:
A block with mass 5.0 kg is attached to a horizontal spring with spring constant 300.0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 9. A diver weighing 600 N drops from a board h meters above the surface of...

    9. A diver weighing 600 N drops from a board h meters above the surface of the water. If the speed of the diver when she is h/4 meters above the surface is 5.0 m/s, find h. 10. A block with mass 5.0 kg is attached to a horizontal spring with spring constant 300.0 N/m. If the block is initially pulled out a distance x cm and then released, and its velocity when it first reaches the equilibrium point is...

  • 2. A block of mass 3.0 kg rests on an inclined planw that makes an angle...

    2. A block of mass 3.0 kg rests on an inclined planw that makes an angle with the horizontal of 25...(pic) 4. A man weighs an apple with a string scale attached to the ceiling of an elevator...(pic) 9. A diver weighing 600 N drops from a board h meters above the surface of the water...(pic) 10. A block with a mass of 5.0 kg is attached to a horizontal spring with a spring constant 300 N/m...(pic) 2. A block...

  • A spring with a spring constant of 50 n/m is attached to a 12 kg mass....

    A spring with a spring constant of 50 n/m is attached to a 12 kg mass. From its equilibrium point (unstretched spring) the block is pulled back a distance of .30 m The block is let go and it begins to move back to its equilibrium point. What is the velocity of the block when it reaches the equilibrium point? (Assume no friction.)

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 4.55 x 10^2 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position x, = 5.65 cm to the right of equilibrium and released from rest. Find the the work required to stretch the spring. Find the speed the block has as it passes through equilibrium.

  • A block of mass 2.0 kg is attached to a horizontal spring that has a force...

    A block of mass 2.0 kg is attached to a horizontal spring that has a force constant of 1200 N/m as shown in the figure. The spring is compressed 10.0 cm and is then released from rest as in the figure. (a) Calculate the speed of the block as it passes through the equilibrium position x=0 if the surface is frictionless. (b) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.65 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position Xi = 5.45 cm to the right of equilibrium and released from rest. x=0 x=x; (a) Find the the work required to stretch the spring (b) Find the speed the block has as it passes through equilibrium m/s

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

  • A block of mass m 2.00 kg is attached to a spring of force constant k-...

    A block of mass m 2.00 kg is attached to a spring of force constant k- 525 N/m as shown in the figure below. The block is pulled to a position x 4.00 cm to the right of equilibrium and released from rest. (o) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless m/s (b) Find the speed the block has as it passes through equilibrium (for the first time) if the...

  • A block with a mass of 0.26 kg is attached to a horizontal spring. The block...

    A block with a mass of 0.26 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until the spring exerts a force of 1.2 N on the block. When the block is released, it oscillates with a frequency of 1.2 Hz. How far was the block pulled back before being released?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT