Question

A block of mass m = 2.00 kg is attached to a sprin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

Work required to stretch = Spring potential energy = (0.5) k x2 = (0.5) (455) (0.0565)2 = 0.7262 J

b)

using conservation of energy

Kinetic energy of block = spring potential energy = 0.7262

(0.5) m v2 = 0.7262

(0.5) (2) v2 = 0.7262

v = 0.852 m/s

Add a comment
Know the answer?
Add Answer to:
A block of mass m = 2.00 kg is attached to a spring of force constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.65 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position Xi = 5.45 cm to the right of equilibrium and released from rest. x=0 x=x; (a) Find the the work required to stretch the spring (b) Find the speed the block has as it passes through equilibrium m/s

  • A block of mass m 2.00 kg is attached to a spring of force constant k-...

    A block of mass m 2.00 kg is attached to a spring of force constant k- 525 N/m as shown in the figure below. The block is pulled to a position x 4.00 cm to the right of equilibrium and released from rest. (o) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless m/s (b) Find the speed the block has as it passes through equilibrium (for the first time) if the...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • A block of mass m=2.00 kg is attached to a spring of force constant k=500. N/m...

    A block of mass m=2.00 kg is attached to a spring of force constant k=500. N/m that lies on a horizontal frictionless surface. The block is pulled back 5.00cm and released. a) How much work was required to stretch the spring? b) What is the speed of the block when it is 2.50cm from the equilibrium point? c) What is the speed of the block at the equilibrium point?

  • 3, A block of mass m = 2.00 kg is attached to a spring of force...

    3, A block of mass m = 2.00 kg is attached to a spring of force constant k = 520 N/m as shown in the figure low. The block is pulled to a position ax, -5.15 em to the right of equilibrium and released from rest. x=0 x=x o Find the sped he lodk has as it passes through equililbrium if the horizontal surface is frctionless (b) Find the speed the block has as it passes through equilibrium (for the...

  • LES AS -110 points SerPSE10 8.3.OP.008. A block of mass m = 2.00 kg is attached...

    LES AS -110 points SerPSE10 8.3.OP.008. A block of mass m = 2.00 kg is attached to a spring of force constant k = 435 N/m as shown in the figure below. The block is pulled to a position x; = 5.90 cm to the right of equilibrium and released from rest. = 0 *= x; 6 (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed...

  • A block of mass 2.0 kg is attached to a horizontal spring that has a force...

    A block of mass 2.0 kg is attached to a horizontal spring that has a force constant of 1200 N/m as shown in the figure. The spring is compressed 10.0 cm and is then released from rest as in the figure. (a) Calculate the speed of the block as it passes through the equilibrium position x=0 if the surface is frictionless. (b) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force...

  • A horizontal spring attached to a wall has a force constant of k = 800 N/m.

    A horizontal spring attached to a wall has a force constant of k = 800 N/m. A block of mass m = 1.80 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi=6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block as it passes through...

  • A horizontal spring attached to a wall has a force constant of k = 900 N/m....

    A horizontal spring attached to a wall has a force constant of k = 900 N/m. A block of mass m = 1.30 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 5.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.20 cm from equilibrium. 1.22J : Your answer is correct. (b)...

  • A horizontal spring with force constant k = 700 N/m is attached to a wall at...

    A horizontal spring with force constant k = 700 N/m is attached to a wall at one end and to a block of mass m = 2.30 kg at the other end that rests on a horizontal surface. The block is released from rest from a position 3.40 cm beyond the spring's equilibrium position. (a) If the surface is frictionless, what is the speed of the block as it passes through the equilibrium position? m/s (b) If the surface is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT