Question

A horizontal spring with force constant k = 700 N/m is attached to a wall at one end and to a block of mass m = 2.30 kg at th

0 0
Add a comment Improve this question Transcribed image text
Answer #1

By work Energy Principle,
\Delta Energy = External Work

As no friction is acting, external work done will be zero

\Delta Energy = 0

\Delta KE +\Delta SPE= 0

0,5m2 — 0,5k 2 = 0

0.5*2.3*v^{2} -0.5*700*0.034^{2}= 0

v= 0.593 m/s

When friction acts,
Work done = Frictional force * displacement (x)

\Delta KE +\Delta SPE= -W_{f}

0.5mv^{2} -0.5kx^{2}= -\mu mg*x

0.5*2.3*v^{2} -0.5*700*0.034^{2}= -0.3*2.3*9.81*0.034

v= 0.389 m/s

Add a comment
Know the answer?
Add Answer to:
A horizontal spring with force constant k = 700 N/m is attached to a wall at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A horizontal spring attached to a wall has a force constant of k = 900 N/m....

    A horizontal spring attached to a wall has a force constant of k = 900 N/m. A block of mass m = 1.30 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 5.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.20 cm from equilibrium. 1.22J : Your answer is correct. (b)...

  • A horizontal spring attached to a wall has a force constant of k = 800 N/m.

    A horizontal spring attached to a wall has a force constant of k = 800 N/m. A block of mass m = 1.80 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi=6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block as it passes through...

  • A horizontal spring with force constant k = 730 N/m is attached to a wall on...

    A horizontal spring with force constant k = 730 N/m is attached to a wall on one end. The other end of the spring is attached to a 1.90 kg object that rests upon a frictionless floor, as shown below. mimi 22 x=0 x= x;/2 i (a) The object is displaced to an initial position of <; = 7.90 cm, extending the spring. Calculate PEs, ;, the potential energy (in )) stored in the spring when the object is in...

  • "A horizontal spring with force constant k = 810 N/m is attached to a wall on...

    "A horizontal spring with force constant k = 810 N/m is attached to a wall on one end. The other end of the spring is attached to a 1.90 kg object that rests upon a frictionless countertop, as shown below." Help with any or all of these would be greatly appreciated, thank you! 3. [0/3 Points] DETAILS PREVIOUS ANSWERS SERCP11 13.4.OP.021. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A horizontal spring with force constant k = 810 N/m is attached...

  • You attach one end of a spring with a force constant k = 693 N/m to...

    You attach one end of a spring with a force constant k = 693 N/m to a wall and the other end to a mass m = 1.62 kg and set the mass-spring system into oscillation on a horizontal frictionless surface as shown in the figure. To put the system into oscillation, you pull the block to a position xi = 6.76 cm from equilibrium and release it. A horizontal spring labeled k is attached on its left end to...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • A block of mass m 2.00 kg is attached to a spring of force constant k-...

    A block of mass m 2.00 kg is attached to a spring of force constant k- 525 N/m as shown in the figure below. The block is pulled to a position x 4.00 cm to the right of equilibrium and released from rest. (o) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless m/s (b) Find the speed the block has as it passes through equilibrium (for the first time) if the...

  • 9. A mass m is attached to a massless spring with a force constant k. The...

    9. A mass m is attached to a massless spring with a force constant k. The mass rests on a horizontal, frictionless surface. The system is compressed a distance x from the spring's initial position and then released. The momentum of the mass when the spring passes its equilibrium position is given by (A) xvmek (B) x/k/m o x/m/k (D) x/km + KxP = {mv² p=mv

  • solve and show work A block of mass m = 1.91 kg attached to a horizontal...

    solve and show work A block of mass m = 1.91 kg attached to a horizontal spring with force constant k = 6.85 x 10' N/m that is secured to a wall is stretched a distance of 5.20 cm beyond the spring's relaxed position and released from rest. (a) What is the elastic potential energy of the block-spring system just before the block is released? 3 (b) What is the elastic potential energy of the block-spring system when the block...

  • A light spring with a spring constant k = 316 N/m is attached to a vertical...

    A light spring with a spring constant k = 316 N/m is attached to a vertical wall at one end and a block with a mass m = 0.462 kg at the other end. The block rests on a horizontal frictionless surface and is initially at the equilibrium length of the spring. The block is then displaced from the equilibrium position of the spring in such a manner as to stretch the spring by an amount A = 0.190 m...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT