Question
A block rests on a frictionless horizontal surface and is attached to a spring.....

Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple h
0 0
Add a comment Improve this question Transcribed image text
Answer #1

- W=9.8 readis iw=flt a K= mc2 Now, by the conservation of energy mvut șik (0.050)2 = K (0.08032 1 m v. ² + 1/2 mw? (0.050)?

Add a comment
Know the answer?
Add Answer to:
A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block rests on a frictionless horizontal surface and is attached to a spring. When set...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 5.0 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled ''x = 0 m.'' The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring...

  • Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to...

    Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 8.4 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "X = 0 m." The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the...

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion,...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 7.2 rad/s. The drawing indicates the position of the block when the spring is unstrained. This position is labeled "x = 0 m." The drawing also shows a small bottle located 0.079 m to the right of this position. The block is pulled to the right, stretching the spring...

  • A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring...

    A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring constant is k = 600 N/m. The block is pulled to the right until it is a distance of 0.08 m from the unstrained position and released from rest. What is the kinetic energy of the block when it is 0.06 m from the unstrained position?

  • A 0.500 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.500 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 29.5 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play Doh is thrown horizontally at the block with a speed of 2.70 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring.

  • A 0.450 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.450 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 24.5 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.60 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring.

  • A 0.330 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.330 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 27.5 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.50 m/s and sticks to it. Determine the amount by which the Play-Doh-block system compresses the spring.

  • A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 28.0 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.70 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring. In cm

  • a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose...

    a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is 450 N. The block is pulled from its equilibrium position at x=0.000 m to a position x=+0.080 m and is released from rest. The block then executes harmonic motion along the horizontal x-axis. The maximum kinetic energy of the system is closest to _____?

  • A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached...

    A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached to an ideal spring. Calibration shows that a force of 0.75 N is required to compress the spring 0.25 cm. A 8.0-g rifle bullet is fired and embeds itself in the block, compressing the spring 15.0 cm before rebounding. (a) What was the speed of the block just after impact? (b) What was the initial bullet speed?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT