Question

A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to...

A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 28.0 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.70 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring.

In cm

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Apply momen tem conservations - minia(mitma) ₂ 0.06X2,7 = (0.06+0.36) V, V2=0.3857 mis Itinetic energy cat equilibrium P.E ¥

Add a comment
Know the answer?
Add Answer to:
A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.500 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.500 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 29.5 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play Doh is thrown horizontally at the block with a speed of 2.70 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring.

  • A 0.450 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.450 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 24.5 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.60 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring.

  • A 0.330 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.330 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 27.5 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.50 m/s and sticks to it. Determine the amount by which the Play-Doh-block system compresses the spring.

  • A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and...

    A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 22.0 N/m. The block rests on a frictionless surface. A 5.40×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.98 m/s and sticking. How far does the putty-block system compress the spring?

  • A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and...

    A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 25.0 N/m. The block rests on a frictionless surface. A 5.60×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.93 m/s and sticking. How far does the putty-block system compress the spring?

  • A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and...

    A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 21.0 N/m. The block rests on a frictionless surface. A 6.00×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.95 m/s and sticking. Part A How far does the putty-block system compress the spring?

  • A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and...

    A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 25.0 N/m. The block rests on a frictionless surface. A 5.90x10-2kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.99 m/s and sticking. Part A How far does the putty-block system compress the spring? ΡΟΙ ΑΣφ ? *max cm Submit Request Answer

  • A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...

    A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 9.8 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "x=0m." The drawing also shows a small bottle located 0.080 m to...

  • A block of mass M = 0.400 kg is attached to a spring that initially rests...

    A block of mass M = 0.400 kg is attached to a spring that initially rests on a frictionless, horizontal surface. A moving rifle bullet with mass m = 16.0 g strikes and embeds itself in the block. The impact compresses the spring by 28.0 cm. The spring constant of the spring is k = 455 N/m. What was the initial speed of the bullet?

  • A 0.30-kg block rests on a frictionless level surface and is attached to a horizontally aligned...

    A 0.30-kg block rests on a frictionless level surface and is attached to a horizontally aligned spring with a spring constant of 52.0 N/m. The block is initially displaced 3.20 cm from the equilibrium point and then released to set up a simple harmonic motion. What is the speed of the block when it passes through the equilibrium point?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT