Question

A block of mass M = 0.400 kg is attached to a spring that initially rests...

A block of mass M = 0.400 kg is attached to a spring that initially rests on a frictionless, horizontal surface. A moving rifle bullet with mass m = 16.0 g strikes and embeds itself in the block. The impact compresses the spring by 28.0 cm. The spring constant of the spring is k = 455 N/m. What was the initial speed of the bullet?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

if you have any questions please comment on this i resolve problem please rate this question.

Add a comment
Know the answer?
Add Answer to:
A block of mass M = 0.400 kg is attached to a spring that initially rests...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached...

    A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached to an ideal spring. Calibration shows that a force of 0.75 N is required to compress the spring 0.25 cm. A 8.0-g rifle bullet is fired and embeds itself in the block, compressing the spring 15.0 cm before rebounding. (a) What was the speed of the block just after impact? (b) What was the initial bullet speed?

  • A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds...

    A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds itself in a block with mass 0.993 kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The impact compresses the spring a maximum distance of 14.0 cm . After the impact, the block moves in SHM. Calculate the period of its motion

  • A forensic scientist calibrating a spring finds that if a force of 0.750 N is applied...

    A forensic scientist calibrating a spring finds that if a force of 0.750 N is applied the spring, it will compress a distance of 0.250 cm. The same spring is then used in a ballistics experiment: a rifle bullet of mass 8.00 g collides with and embeds itself in a block of mass 0.992 kg that was initially at rest on a horizontal frictionless surface. The block is attached to the spring as shown. The impact compresses the spring 15.0...

  • 1) A block of mass m = 0.52 kg is attached to a spring with force...

    1) A block of mass m = 0.52 kg is attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) (a) At that instant, find the force on the block.   N   (b)...

  • PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g...

    PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g strikes and embeds itself in a block with mass 1000 g that rests on a frictionless, horizontal surface and is attached to a coil spring. The initial velocity of the bullet was 700 m/s. The impact compresses the springy a distance x. The spring constant is 550 N/m. The spring is ideal. a) Find the magnitude of the block's velocity (with the bullet stuck...

  • A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to...

    A 0.360 kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 28.0 N/m force constant that is at its equilibrium length. A 0.0600 kg wad of Play-Doh is thrown horizontally at the block with a speed of 2.70 m/s and sticks to it. Determine the amount in centimeters by which the Play-Doh-block system compresses the spring. In cm

  • PLEASE ANSWER A AND B AND INDICATE EACH ONE PLEASE <Assignment #5 (Ch 7 and Ch...

    PLEASE ANSWER A AND B AND INDICATE EACH ONE PLEASE <Assignment #5 (Ch 7 and Ch 8) Problem 8.61 35 of 36 II Review | Constants A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a mass of 0.992 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. (See (Figure 1).) The impact compresses the spring 15.0 cm. Calibration of the spring shows that a force of 0.600...

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a spring with a force constant of 20.0 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.3 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • 2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to...

    2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.4 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block. ___...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT