Question

A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds...

A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds itself in a block with mass 0.993 kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The impact compresses the spring a maximum distance of 14.0 cm . After the impact, the block moves in SHM.

Calculate the period of its motion

0 0
Add a comment Improve this question Transcribed image text
Answer #1

240m Cm+M) V Final momentan 。 (0.009 + 6.993〉 v Pf Since moe자emal forc e is acting/ momentum uoiuYe main co nserwed aleck ン홀

Add a comment
Know the answer?
Add Answer to:
A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A bullet with mass 25g and initial horizontal velocity 320m=s strikes a block of mass 2kg...

    A bullet with mass 25g and initial horizontal velocity 320m=s strikes a block of mass 2kg that rests on a frictionless surface and is attached to one end of a spring. The bullet becomes embedded in the block. The other end of the spring is attached to the wall. The impact compresss the spring a maximum distance of 25cm. After the impact, the block moves in simple harmonic motion. 1. What is the frequency of the oscillation? 2. Sketch graphs...

  • A bullet with mass 25g and initial horizontal velocity 320m/s strikes a block of mass 2kg...

    A bullet with mass 25g and initial horizontal velocity 320m/s strikes a block of mass 2kg that rests on a frictionless surface and is attached to one end of a spring. The bullet becomes embedded in the block. The other end of the spring is attached to the wall. The impact compresss the spring a maximum distance of 25cm. After the impact, the block moves in simple harmonic motion. What is the frequency of the oscillation? Sketch graphs for the...

  • A block of mass M = 0.400 kg is attached to a spring that initially rests...

    A block of mass M = 0.400 kg is attached to a spring that initially rests on a frictionless, horizontal surface. A moving rifle bullet with mass m = 16.0 g strikes and embeds itself in the block. The impact compresses the spring by 28.0 cm. The spring constant of the spring is k = 455 N/m. What was the initial speed of the bullet?

  • PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g...

    PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g strikes and embeds itself in a block with mass 1000 g that rests on a frictionless, horizontal surface and is attached to a coil spring. The initial velocity of the bullet was 700 m/s. The impact compresses the springy a distance x. The spring constant is 550 N/m. The spring is ideal. a) Find the magnitude of the block's velocity (with the bullet stuck...

  • A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached...

    A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached to an ideal spring. Calibration shows that a force of 0.75 N is required to compress the spring 0.25 cm. A 8.0-g rifle bullet is fired and embeds itself in the block, compressing the spring 15.0 cm before rebounding. (a) What was the speed of the block just after impact? (b) What was the initial bullet speed?

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a spring with a force constant of 20.0 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.3 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • 2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to...

    2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.4 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block. ___...

  • A forensic scientist calibrating a spring finds that if a force of 0.750 N is applied...

    A forensic scientist calibrating a spring finds that if a force of 0.750 N is applied the spring, it will compress a distance of 0.250 cm. The same spring is then used in a ballistics experiment: a rifle bullet of mass 8.00 g collides with and embeds itself in a block of mass 0.992 kg that was initially at rest on a horizontal frictionless surface. The block is attached to the spring as shown. The impact compresses the spring 15.0...

  • A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block...

    A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block at rest on a frictionless surface. . The block is attached to a spring with k = 90.0 N/mFind the period.Find the amplitude of the subsequent simple harmonic motion.Find the total energy of the bullet+block+spring system before the bullet enters the block.Find the total energy of the bullet+block+spring system after the bullet enters the block.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT