Question

An ideal diatomic gas undergoes an adiabatic expansion during which time its volume changes from VA...

An ideal diatomic gas undergoes an adiabatic expansion during which time its volume changes from VA = 450 cm3 to VB = 1500 cm3. If its initial pressure is PA = 5.60 atm, what is the final pressure PB of the gas? ________ atm

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An ideal diatomic gas undergoes an adiabatic expansion during which time its volume changes from VA...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure...

    An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are 1.8 atm and 0.60 m3. It's final pressure is 2.0 atm. How much work is done by the gas? Numbern Units? 10130

  • An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure...

    An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are 1.8 atm and 0.40 m3. It's final pressure is 2.7 atm. How much work is done by the gas? NumberTT-2.50 Units the tolerance is +/-2% Open Show Work Click if you would like to Show Work for this question:

  • 13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas...

    13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas decreases from 800.0K to 500.OK. The initial volume of the gas is 0.10 m². a. What is the final volume and pressure of the gas, after expansion? b. What is the change in internal energy of the gas? C. Calculate the work associated with this process.

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 5.30 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (5.30)1/3po. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure...

    A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. a) Did the gas expand or contract? (b) What is the ratio of its final volume to its initial volume? A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. (a) Did the gas expand or contract? o expand o contract (b) What is the ratio...

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 2.30 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (2.30)1/320. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 4.10 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (4.10)1/3po. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • 2 sig fig - Your answer is partially correct. An ideal diatomic gas, with rotation but...

    2 sig fig - Your answer is partially correct. An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are 1.3 atm and 0.2 m". It's final pressure is 2.6 atm. How much work is done by the gas Number i -3.3E4 Units

  • Now consider a sample of 1 mole of a diatomic ideal gas that is initially at...

    Now consider a sample of 1 mole of a diatomic ideal gas that is initially at a temperature of 265 kelvin and volume of .2 m^3. The gas first undergoes an isobaric expansion, such that its temperature increases by 120 kelvin. It then undergoes an adiabatic expansion so that its final volume is .360 m^3 a) What is the initial pressure of the gas, in kPa? b) What is the total heat transfer, Q, to the gas, in J? c)...

  • A diatomic ideal gas expands from a volume of VA-1.00 mºto V, - 3.00 m along...

    A diatomic ideal gas expands from a volume of VA-1.00 mºto V, - 3.00 m along the path shown in the figure below. The initial pressure is PA-2.00 x 10 Pa and there are 67.3 mol of gas. P(10%Pa) 4.00 8.00 2.00 1.00 1.00 2.00 3.00 100V (m) (a) Calculate the work done on the gas during this process. (b) Calculate the change in temperature of the gas. (c) Calculate the change in internal energy of the gas. (Take the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT