Question

An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are 1.8 atm and 0.40 m3. Its final pressure is 2.7 atm. How much work is done by the gas? NumberTT-2.50 Units the tolerance is +/-2% Open Show Work Click if you would like to Show Work for this question:

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure...

    An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are 1.8 atm and 0.60 m3. It's final pressure is 2.0 atm. How much work is done by the gas? Numbern Units? 10130

  • 2 sig fig - Your answer is partially correct. An ideal diatomic gas, with rotation but...

    2 sig fig - Your answer is partially correct. An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are 1.3 atm and 0.2 m". It's final pressure is 2.6 atm. How much work is done by the gas Number i -3.3E4 Units

  • An ideal gas undergoes an adiabatic compression from p = 1.00 atm, V = 1.00 x...

    An ideal gas undergoes an adiabatic compression from p = 1.00 atm, V = 1.00 x 106 L T = 0.00°C to p = 1.00 x 10s atm, V = 1.00 x 103 L. (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is its final temperature? (c) How many moles of gas are present? What is the total translational kinetic energy per mole (d) before and (e) after the compression? (f) What is the ratio of the squares...

  • An ideal diatomic gas undergoes an adiabatic expansion during which time its volume changes from VA...

    An ideal diatomic gas undergoes an adiabatic expansion during which time its volume changes from VA = 450 cm3 to VB = 1500 cm3. If its initial pressure is PA = 5.60 atm, what is the final pressure PB of the gas? ________ atm

  • x C Search Tesxtbook Solutions | Cheg x + om/ 0597/assignments/264999 to Canvas Canvas-Cuy Question 10...

    x C Search Tesxtbook Solutions | Cheg x + om/ 0597/assignments/264999 to Canvas Canvas-Cuy Question 10 -Your answer is partially correct. An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial are 1.2 atm and 0.9 m3. It's final pressure is 2.2 atm. How much work is done by the gas? pressure and volume Number 60795 Units eTextbook and Media Hint Attempts: 2 of 6 used Using multiple attempts will impact your score 5% score...

  • We have a diatomic ideal gas with a y of 5/2. It starts with an initial...

    We have a diatomic ideal gas with a y of 5/2. It starts with an initial pressure of 1kPa, an initial temperature of 100 K, and an initial volume of 10 m^3 a) The gas undergoes an adiabatic compression, halving its volume. What is its new pressure? b) What was the work done? c) What was the heat flow? d) Now, keeping pressure constant, heat is put into the gas, doubling the volume. How much heat is added? e) What...

  • A system of diatomic ideal gas is in an initial state such that the pressure is...

    A system of diatomic ideal gas is in an initial state such that the pressure is 69.0 kPa and the volume occupied by the gas is 6.00 L. The system then experiences a compression at constant temperature that raises the pressure to 165 kPa. (a) Calculate the final volume occupied by the gas. __L (b) Calculate the work done by the gas in this process. (Include the sign of the value in your answer.) __J Please show all work!

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 4.10 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (4.10)1/3po. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • An ideal gas undergoes isothermal compression from an initial volume of 5.28 m3 to a final...

    An ideal gas undergoes isothermal compression from an initial volume of 5.28 m3 to a final volume of 2.89 m3. There is 6.41 mol of the gas, and its temperature is 11.4°C. (a) How much work is done by the gas? (b) How much energy is transferred as heat between the gas and its environment?

  • A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature...

    A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature 25C., pressure of 100KPa and volume of 0.01m3. The system is then compressed isothermally to a volume 0.002m3. From that point, the gas undergoes an adiabatic compression ( with gamma= 1.4), until the volume further reduces to 0.001m3. After that, the system goes an isothermal expansion process to a point where the pressure of the system is 263.8KPa. Then the system continues the cycle...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT