Question

Circular loop of wire

A circular loop of wire is in a region of spatially uniformmagnetic field. The magnetic field is directed into the plane ofthe figure.

Determine the direction of the induced current in the loop whenB isincreasing.

Determine the direction of the induced current in the loop whenB isdecreasing.

Determine the direction of the induced current in the loop whenB isconstant with value B_0.
0 0
Add a comment Improve this question Transcribed image text
Answer #1
Lenz's Law says the current flows to oppose the flux change thatcaused it

The magnetic field is outward through the round coil and isdecreasing, so the magnetic
field due to the induced current must also point outward to opposethis decrease. Therefore the induced current iscounterclockwise.

answered by: Shanyah
Add a comment
Know the answer?
Add Answer to:
Circular loop of wire
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A circular loop of wire with radius 0.0270 m and resistance 0.320 Ω

    A circular loop of wire with radius 0.0270 m and resistance 0.320 Ω is in a region of spatially uniform magnetic field, as shown in the following figure(Figure 1). The magnetic field is directed into the plane of the figure. At t = 0, B = 0. The magnetic field then begins increasing, with B(t) =( 0.400 T/s3)t3 .Part A What is the current in the loop (magnitude) at the instant when B = 1.38 T? Part B What is the direction of the...

  • A circular loop of wire with radius 0.0290 m and resistance 0.370Ω

    A circular loop of wire with radius 0.0290 m and resistance 0.370Ω is in a region of spatially uniform magnetic field, as shown in the following figure(Figure 1). The magnetic field is directed into the plane of the figure. At t = 0, B = 0. The magnetic field then begins increasing, with B(t) = (0.400 T/s3)t3 Part A What is the current in the loop (magnitude) at the instant when B = 1.29 T?  

  • A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field

    A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field, as shown in the figure. The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 8.00 T and is decreasing dB/ dt = -0.680 T a) Is the induced current in the loop clockwise or counterclockwise? b) What is the rate at which electrical energy is being dissipated...

  • In the following figure, determine the direction of the current in resistor ab: A) As switch...

    In the following figure, determine the direction of the current in resistor ab: A) As switch S is closed. B) As coil B is moved away from coil A with the switch closed; C) As the resistance of R is increased while the switch remains closed A circular loop of wire with radius R, is in a region of spatially uniform magnet field as shown below. The magnetic field is directed into the plane of the figure. Calculate the direction...

  • 24 A circular loop of wire is in a region of spatially uniform magnetic field directed...

    24 A circular loop of wire is in a region of spatially uniform magnetic field directed into the page. Determine the direction of the induced current (as viewed from above) when the magnitude of the magnetic field is increasing. a. Clockwise b. Counterclockwise c. No current flows. 25 An electron enters a region where the uniform magnetic field strength is 4.0 T at a velocity of 4.88 x 10^m/s perpendicular to the field. Determine the radius of gyration of the...

  • Parts A-E refer to the following figure of a circular loop of conducting wire

     1)  Parts A-E refer to the following figure of a circular loop of conducting wire. In the figure, Region I has a uniform magnetic field in the direction shown and Region II has no magnetic field. a) If the loop moves to the right and starts to move into Region II, what is the direction of the induced current in the wire? Circle the correct response. a) Clockwise. b) Counterclockwise. c) There is no induced current. b) If the loop moves straight down and remains...

  • If a circular loop of wire of radius 14.9 cm is located in a region where...

    If a circular loop of wire of radius 14.9 cm is located in a region where the spatially uniform magnetic field perpendicular to the plane of the loop is changing at a rate of +1.6 ✕ 10−3 T/s, find the value of the induced EMF in this loop due to this changing magnetic field.

  • A single-turn circular loop of wire of radius 68 mm lies in a plane perpendicular to...

    A single-turn circular loop of wire of radius 68 mm lies in a plane perpendicular to a spatially uniform magnetic field. During a 0.1 s time interval, the magnitude of the field increases uniformly from 200 to 300 mT. (a) Determine the emf induced in the loop. Submit Answer Tries 0/3 (b) If the magnetic field is directed out of the page (and you're looking from above!), what is the direction of the current induced in the loop? Why? Submission...

  • A circular loop of wire with radius 0.0250 m and resistance 0.340 is in a region...

    A circular loop of wire with radius 0.0250 m and resistance 0.340 is in a region of spatially uniform magnetic field, as shown in the following figure(Figure 1). The magnetic field is directed into the plane of the figure Att =0, B = 0. The magnetic field then begins increasing, with B(t) =(0.400 T/S) Part A What is the current in the loop (magnitude) at the instant when B = 1.50 T? Express your answer with the appropriate units. Figure...

  • Problem 1 (20 points] A circular loop of wire with radius r = 10 cm and...

    Problem 1 (20 points] A circular loop of wire with radius r = 10 cm and Resistance R = 1 N is * in a region of uniform magnetic field, as shown in the figure. The magnetic field is directed into the plane. At t = 0s, the magnetic field * * is zero. Then, the magnetic field starts to increase as function of time, B(t) = 0.5t? * * * X X a) [5 points) is the magnetic flux...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT