Question

A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field



A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field, as shown in the figure. The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 8.00 T and is decreasing dB/ dt = -0.680 T

image.png


 a) Is the induced current in the loop clockwise or counterclockwise?

 b) What is the rate at which electrical energy is being dissipated by  the resistance of the loop? 


a) counterclockwise 0.0308 A 

b) 1.51 x 10-4 w

3 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A circular loop of wire with radius r= 0.0480m and reistance R = 0.160 Ω is in a region of spatially uniform magnetic field
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 24 A circular loop of wire is in a region of spatially uniform magnetic field directed...

    24 A circular loop of wire is in a region of spatially uniform magnetic field directed into the page. Determine the direction of the induced current (as viewed from above) when the magnitude of the magnetic field is increasing. a. Clockwise b. Counterclockwise c. No current flows. 25 An electron enters a region where the uniform magnetic field strength is 4.0 T at a velocity of 4.88 x 10^m/s perpendicular to the field. Determine the radius of gyration of the...

  • A circular loop of wire with radius 0.0270 m and resistance 0.320 Ω

    A circular loop of wire with radius 0.0270 m and resistance 0.320 Ω is in a region of spatially uniform magnetic field, as shown in the following figure(Figure 1). The magnetic field is directed into the plane of the figure. At t = 0, B = 0. The magnetic field then begins increasing, with B(t) =( 0.400 T/s3)t3 .Part A What is the current in the loop (magnitude) at the instant when B = 1.38 T? Part B What is the direction of the...

  • The figure below shows a circular loop of wire of resistance R = 0.500Ω and radius r = 9.30 cm in the presence of a uniform magnetic field B out directed out of the page

    The figure below shows a circular loop of wire of resistance R = 0.500Ω and radius r = 9.30 cm in the presence of a uniform magnetic field B out directed out of the page. A clockwise current of I = 3.30 mA is induced in the loop.(a) Which of the following best describes the magnitude of Bout It is increasing with time. It is decreasing with time. It remains constant. (b) Find the rate at which the field is changing with time (in...

  • Q1. (25 points) A circular loop of wire of resistance R = 1 N and radius...

    Q1. (25 points) A circular loop of wire of resistance R = 1 N and radius r = 15 cm is in a uniform magnetic field directed out of the page as shown in the figure. a) (7 points) If a clockwise current of I = 8 mA is induced in the loop, is the magnetic field increasing or decreasing in time? b) (8 points) Find the induced emf in the loop. c) (10 points) Find the rate at which...

  • Q1. (25 points) A circular loop of wire of resistance R = 4 N and radius...

    Q1. (25 points) A circular loop of wire of resistance R = 4 N and radius r = 30 cm is in a uniform magnetic field directed out of the page as shown in the figure. a) (7 points) If a clockwise current of 1 = 20 mA is induced in the loop, is the magnetic field increasing or decreasing in time? b) (8 points) Find the induced emf in the loop. c) (10 points) Find the rate at which...

  • A circular loop of wire of resistance - 0.500 and radius 8.10 cm is in a...

    A circular loop of wire of resistance - 0.500 and radius 8.10 cm is in a uniform magnetic field directed out of the page as in the figure below. A clockwise current of 120 mA is induced in the loop. (a) is the magnetic field increasing or decreasing in time? decreasing (b) Find the rate at which the field is changing with time.

  • a wire loop of diameter 15 cm is inside a spatially uniform magnetic field of magnitude...

    a wire loop of diameter 15 cm is inside a spatially uniform magnetic field of magnitude .5 T. with the field lines perpendicular to the face of the loop. what is the magnitude if the emf induced in the loop of the magnetic field drops uniformly to 0 T in 1 second c) a and c a, b and c d) e) c Question 14 A wire loop of diameter 15 cm is inside a spatially uniform magnetic field of...

  • If a circular loop of wire of radius 14.9 cm is located in a region where...

    If a circular loop of wire of radius 14.9 cm is located in a region where the spatially uniform magnetic field perpendicular to the plane of the loop is changing at a rate of +1.6 ✕ 10−3 T/s, find the value of the induced EMF in this loop due to this changing magnetic field.

  • A circular coil of radius 5 cm has 50 turns of wire. The uniform magnetic field...

    A circular coil of radius 5 cm has 50 turns of wire. The uniform magnetic field directed into the page/screen (see the figure below) is linearly increased in magnitude form 0 to 0.8 T. What time interval for this increase is needed to induce in the coil emf = 0.25 V? What is the direction of the induced emf (clockwise/counterclockwise)? Which law do we use?

  • Problem 1 (20 points] A circular loop of wire with radius r = 10 cm and...

    Problem 1 (20 points] A circular loop of wire with radius r = 10 cm and Resistance R = 1 N is * in a region of uniform magnetic field, as shown in the figure. The magnetic field is directed into the plane. At t = 0s, the magnetic field * * is zero. Then, the magnetic field starts to increase as function of time, B(t) = 0.5t? * * * X X a) [5 points) is the magnetic flux...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT