Question

Conservation of energy

A 8.0-m massless rod is loosely pinned to a frictionless pivot at 0. A 4.0-kg ball is attached to the other end of the rod. The ball is held at A, where the rod makesa 30° angle above the horizontal, and is released. The ball-rod assembly then swings freely in a vertical circle between A and B. In Fig. 7.1a, the tension in the rodwhen the ball passes through the lowest point at C is closest to:
0 0
Add a comment Improve this question Transcribed image text
Answer #1
l =8m, m = 4kg.

Change in Potential energy = mgh = 4*9.8*8(1+sin30) = 470.4J

Therefore kinetic energy of mass at the lowest point = 0.5mv^2 = 470.4

v^2 = 470.4*2/4 = 235.2

Tension = mg + mv^2/l = 4*9.8 + 4*235.2/8 = 156.8 N
answered by: marko check pls 2
Add a comment
Know the answer?
Add Answer to:
Conservation of energy
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • s l An 8.00 m massless rod is loosely pinsed to a frictionless pivot at O,...

    s l An 8.00 m massless rod is loosely pinsed to a frictionless pivot at O, as shown in the figuare. A atached to the other end of the rod. The ball is held at A, where the rod makes a 30.0 and is released. The ball-rod assembly then swings freely with negligible friction in a Questien 7 (1ntli very small 4.00 kg ball is angle above the horizontal, vertical cirele between A and B. The tension in the rod...

  • Question 6 A 5.0 m massless rod is held in place at a pivot point. The...

    Question 6 A 5.0 m massless rod is held in place at a pivot point. The rod has a small mass of 2.5 kgs attached to it. It is pulled up by an angle of 25 degrees from the horizon and then released. a) Rank the magnitude of the gravitational potential energy of the ball from greatest to lowest and explain your reasoning. (3 points) b) If friction is negligible what is the tension on the rod when + the...

  • Question 6 A 5.0 m massless rod is held in place at a pivot point. The...

    Question 6 A 5.0 m massless rod is held in place at a pivot point. The rod has a small mass of 2.5 kgs attached to it. It is pulled up by an angle of 25 degrees from the horizon and then released. a) Rank the magnitude of the gravitational potential energy of the ball from greatest to lowest and explain your reasoning. (3 points) b) If friction is negligible what is the tension on the rod when + D...

  • A ball of mass 1.25 kg is attached by a 1.4 meter long massless rope to...

    A ball of mass 1.25 kg is attached by a 1.4 meter long massless rope to the top of a vertical pole. The ball swings in a horizontal circle at a constant rate of ? rad/s with the rope making an angle of 29 A ball of mass 1.25 kg is attached by a 1.4 meter long massless rope to the top of a vertical pole. The ball swings in a horizontal circle at a constant rate of ? rad/s...

  • A massless rigid rod whose length L = 21.0 cm has a ball of mass m...

    A massless rigid rod whose length L = 21.0 cm has a ball of mass m = 0.079 kg attached to one end (see Figure). The other end is pivoted in such a way that the ball will move in a vertical circle. The system is launched from the horizontal position A with an initial downward speed v0. The ball just reaches point D and then stops. Calculate v0. What is the tension in the rod at B? · Rod...

  • 4. A small object of mass M is swinging around in a vertical circle held by...

    4. A small object of mass M is swinging around in a vertical circle held by a massless string of length L, attached to a pivot, as shown. Given that the speed of the mass at the bottom of the circle is Vo, find the tension in the string when the mass is at an angle (theta) with respect to the vertical (see figure) Pivot M

  • please solve using conservation of energy and relative acceleration, thank you. 1. The rod has mass...

    please solve using conservation of energy and relative acceleration, thank you. 1. The rod has mass 2.00 kg and length 1.50 m, and the cart has mass 4.00 kg. The rod can swing freely in a complete circle. If the system is released from rest in the position shown, what is the velocity of the rod and the velocity of the cart (relative to a stationary observer) as the rod passes the vertical position? 30° 1. The rod has mass...

  • The figure shows a thin rod, of length L = 2.10 m and negligible mass, that...

    The figure shows a thin rod, of length L = 2.10 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 9.20 kg is attached to the other end. The rod is pulled aside to angle θ0 = 22.0° and released with initial velocity = 0. As the ball descends to its lowest point, (a) how much work does the gravitational force do on it and (b)...

  • 1a. 1b. 1c. Block A slides down the incline In the figure, two blocks are connected...

    1a. 1b. 1c. Block A slides down the incline In the figure, two blocks are connected over a pulley. The mass of block A is me and the coeffcient of kinetic friction between A and the incline is in Angle of the incline is 6 at constant speed. What is the mass of block B? Express your answer in terms of the variables given. Frictionless, massless pulley B In the figure, a small block of mass m = 0.021 kg...

  • The figure shows a thin rod, of length L = 1.6 m and negligible mass, that...

    The figure shows a thin rod, of length L = 1.6 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 9.1 kg is attached to the other end. The rod is pulled aside to angle θ0 = 6.4° and released with initial velocity v Overscript right-arrow EndScripts Subscript 0 = 0. As the ball descends to its lowest point, (a) how much work does the gravitational...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT