Question

(1) Let a (.. ,a-2, a-1,ao, a1, a2,...) be a sequence of real numbers so that f(n) an. (We may equivalently write a = (abez)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) From 0=(A^2-A-1)f(n) we get

\begin{align*}0&=A^2f(n)-Af(n)-f(n)\\ &=f(n+2)-f(n+1)-f(n)\\ ~\Rightarrow~~~f(n)&=f(n+2)-f(n+1)\end{align*}

Put \begin{align*}n=k-2\end{align*} to get \begin{align*}f(k-2)=f(k)-f(k-1)\end{align*} . Thus, \begin{align*}a_{k-2}=a_k-a_{k-1}\end{align*}

b) For \begin{align*}n=0\end{align*} we have \begin{align*}f_{-n}=f_{-0}=f_0=0=-0=-f_0=(-1)^{n+1}f_n \end{align*} . Also, for \begin{align*}n= 1\end{align*} we have

\begin{align*}f_{-n}=f_{-1}=f_1-f_0=1=(-1)^{1+1}f_1 =(-1)^{n+1}f_n \end{align*}

Suppose that \begin{align*}n>1\end{align*} and that for every \begin{align*}0 \leq q<n\end{align*} it holds that \begin{align*}f_{-q}=(-1)^{q+1}f_q\end{align*} . Then part a) gives

\begin{align*}f_{-n}&=f_{-(n-2)}-f_{-(n-1)}\\ &=(-1)^{n-1}f_{n-2}-(-1)^nf_{n-1}\\ &=(-1)^{n-1}(f_{n-2}+f_{n-1})\\ &=(-1)^{n-1}f_n \end{align*}

Thus, by induction, we have \begin{align*}f_{-q}=(-1)^{q+1}f_q\end{align*} for all \begin{align*}q\geq 0\end{align*} .

c) Since \begin{align*}f_{-q}=(-1)^{q+1}f_q\end{align*} , we find

\begin{align*}f_{-q}&=f_q\\ \mbox{if and only if}\hspace{1.4cm}(-1)^{q+1}f_q&=f_q\\ \mbox{if and only if}\hspace{1.8cm}(-1)^{q+1}&=1\\ \mbox{if and only if}\hspace{3cm}q&=2r-1\end{align*}

for some \begin{align*}r\end{align*} . That is, \begin{align*}q\end{align*} has to be odd.

d) We show that  \begin{align*}f_kf_{k+1}= f_0^2+f_1^2 +\cdots+f_k^2\end{align*} for \begin{align*}k\geq 0\end{align*} .

If \begin{align*}k= 0\end{align*} then \begin{align*}f_kf_{k+1}=0\end{align*} and \begin{align*}f_k^2=0\end{align*} , thus, the statement \begin{align*}f_kf_{k+1}= f_0^2+f_1^2 +\cdots+f_k^2\end{align*} holds for \begin{align*}k= 0\end{align*} .

Suppose that \begin{align*}f_kf_{k+1}= f_0^2+f_1^2 +\cdots+f_k^2\end{align*} . Then

\begin{align*}f_{k+1}f_{k+2}&=f_{k+1}(f_k+f_{k+1})\\ &=f_kf_{k+1}+f_{k+1}^2\\ &=(f_0^2+\cdots+f_{k}^2)+f_{k+1}^2\\ &=(f_0^2+\cdots+f_{k}^2+f_{k+1}^2)\end{align*}

Thus, by induction, we have \begin{align*}f_kf_{k+1}= f_0^2+f_1^2 +\cdots+f_k^2\end{align*} for all \begin{align*}k\geq 0\end{align*} .

Using part b) we get

\begin{align*}f_{-(k+1)}f_{-k}&=(-1)^{k+2}f_{k+1}(-1)^{k+1}f_k\\ &=(-1)^{2k+3}f_{k+1}f_k\\ &=-f_kf_{k+1}\\ &=-(f_0^2+\cdots+f_{k}^2)\end{align*}

for all \begin{align*}k\geq 0\end{align*} .

Add a comment
Know the answer?
Add Answer to:
(1) Let a (.. ,a-2, a-1,ao, a1, a2,...) be a sequence of real numbers so that f(n) an. (We may eq...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT