Question

Problem 5 (20 Points): For the circuit shown below, the input is the current source, I(t) and the output is eo. 1). Find the

0 0
Add a comment Improve this question Transcribed image text
Answer #1

사 (in 사 R C Yc. 그1(4 RCRC 사! RC RC0 ア オナ-v (. し zero state rerhonn 0 i1 (o ) L lo)Rc A. 그 R L R LR Lれ小m/Q -b וב) ה zero.htr_ due()2o due to cos(4) に l0 10

Add a comment
Know the answer?
Add Answer to:
Problem 5 (20 Points): For the circuit shown below, the input is the current source, I(t) and the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem-4: Find a) the transfer function using “Direct Method” if the input is e(t) and the...

    Problem-4: Find a) the transfer function using “Direct Method” if the input is e(t) and the output is eo. For parts b and c, take C = R=1. b) If e(t) = 15, use FVT (if applicable), to determine the steady state value of the zero-state response [(eo)zs]ss. c) If ei(t) = 3cos(2t + 7/3), find steady state response, (eo)ss. * Tivhinois eo Сео

  • 5- For the following system: x( Input: x(t)s u(t) Output: y() With the initial condition y(0) 1...

    5- For the following system: x( Input: x(t)s u(t) Output: y() With the initial condition y(0) 1, y(O)-0, RI-1, R2-12, CI-2F, C2-1F. Identify the natural and forced response of the system a) Find the zero input response. b) Unit impulse response. c) zero state response. d) The total response. e Identify the natural and forced response of the system. 5- For the following system: x( Input: x(t)s u(t) Output: y() With the initial condition y(0) 1, y(O)-0, RI-1, R2-12, CI-2F,...

  • Problem 2: (40 pts) Part A: (20pts) A third-order system has an of Y(s)-L[y(t) corresponding to...

    Problem 2: (40 pts) Part A: (20pts) A third-order system has an of Y(s)-L[y(t) corresponding to a unit step input u(t) is known to be input of u(t) and an output of y(t). The forced response portion 1 Ys) (3 +3s2+ 4s +5) = a) Determine the input-output differential equation for the system b) From your result in a), determine the transformed free response Yee (s) corresponding to initial conditions of: y(0)= y(0) = 0 and ý(0)-6 Part B (20pts)...

  • Problem 1 (Problem Solving Workshop 1) For a parallel RL circuit R-10, L 1H Determine 1)...

    Problem 1 (Problem Solving Workshop 1) For a parallel RL circuit R-10, L 1H Determine 1) 21 3) 4) The transfer function H(s) = (s), the pole-zero map, and the step response. Let L(0) - OA The state and output equations. Let Lt) be the state variable The block diagram of this system. Let (O) = -1 The response (t) due to a step input (t) = (t) A) using a known software. Problem #2 (Problem Solving Workshop 1) For...

  • Problem 1 Given the transfer function from input u(t) to output y(t), s2-4s +3 Y(s) U(s) (s2 + 6s + 8)(82 + 25) (a) Dev...

    Problem 1 Given the transfer function from input u(t) to output y(t), s2-4s +3 Y(s) U(s) (s2 + 6s + 8)(82 + 25) (a) Develop a state space model for this transfer function, in the standard form y=Cx + Du (b) Suppose that zero input is applied, such that u 0. Perform a modal analysis of the state response for this open-loop system. Your analysis should include the nature of the time response for each mode, as well as how...

  • need asap 1, (20 points) Suppose we have a İTİ system with impulse response(h(t) described as...

    need asap 1, (20 points) Suppose we have a İTİ system with impulse response(h(t) described as following h(t) 6u(t) where u(t) is unit step function. The output(Y (s)) is expressed as the product of input (R(s)) and transfer function Y(s) = R(s)H(s) The Laplace transform is defined as LTI system R(H) Y (s) Figure 1: LTI system in s-plane (a) (5 points) Find the tranisfer function(H(s)) of the LITI system. (b) (5 points) Find the Laplace transform of the input(r(t)....

  • Problem 24: (18 points) 1. (6 points) Figure 2 shows an RC circuit with input f(t)...

    Problem 24: (18 points) 1. (6 points) Figure 2 shows an RC circuit with input f(t) and output y(t) Function Generator R, v, (r) y1) Figure 2: RC circuit. (a) (1 point) Sketch the circuit in the phasor domain by replacing the capacitor with its impedance represen- (b) (3 points) Using circuit analysis techniques, show that the frequency response function is Specify the DC gain, K, and the time constant, T, in terms of the parameters R, R, and C...

  • . (40pts) Consider a spring-mass-damper system shown below, where the input u() is displacement input at...

    . (40pts) Consider a spring-mass-damper system shown below, where the input u() is displacement input at the right end of the spring k3 and x() is the displacement of mass ml. (Note that the input is displacement, NOT force) k3 k1 m2 (a) (10pts) Draw necessary free-body diagrams, and the governing equations of motion of the system. (b) (10pts) Find the transfer function from the input u() to the output x(t). (c) (10pts) Given the system parameter values of m1-m2-1,...

  • 1. The system S = {A, 5.e, where A = [1 2] 1-() c=[1 -1.Jis excited...

    1. The system S = {A, 5.e, where A = [1 2] 1-() c=[1 -1.Jis excited by the 1. The system S = {A, b,c}, where A = is excited by the input u(t) = (5e 21 cost).1(t) where l(t) is the unit step function. Use the Caley-Hamilton Theorem to find the complete response of the system. Identify a. The zero state response to the given input; b. The zero input response to the initial state x(0) = (x2(0) C....

  • Consider the following circuits connected in series. The input is the voltage x(t), the output to...

    Consider the following circuits connected in series. The input is the voltage x(t), the output to system Si is the voltage y(t), and the output of system S2 is the voltage y(t). The differential equation relating the input X(t) to the output yı(t) was found in Homework #3. S2 x(1) y(t) | X(t) 6+ R yce) .66) (1) + y(t) Let L = 0.01, C1 = 0.01, R = 100, C2 = 0.002, and R2 = 50. a) Find the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT