Question

Question 1 (10 marks) For a linear system Ax b with 1 0-1 A-1 2-1 2-13 and b4 18 compute by hand the first four iterations wi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

giveh linec syster 3 tu.sing Gouss Tardon ne/hod th) n) 3Ci) (al) 3 と3 3 수+. 8 21 22ズ 13 χ ,- ,.ht誓峈 282 2

Add a comment
Know the answer?
Add Answer to:
Question 1 (10 marks) For a linear system Ax b with 1 0-1 A-1 2-1 2-13 and b4 18 compute by hand ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1 (10 marks) For a linear system Ax- b with 1 0 -1 A-1 2-1 2 -1 3 b=14 18 and compute by...

    Please do question 5 for me. Thanks Question 1 (10 marks) For a linear system Ax- b with 1 0 -1 A-1 2-1 2 -1 3 b=14 18 and compute by hand the first four iterations with the Jacobi method, using x()0 Hint: for the ease of calculation, keep to rational fractions rather than decimals Question 2 For the same linear system as in Question 1, compute by hand the first three iterations (10 marks) with the Gauss Seidel method,...

  • 1. [12 marks] In the following parts of this question, write a MATLAB code to solve a linear syst...

    1. [12 marks] In the following parts of this question, write a MATLAB code to solve a linear system A b (A is a square nonsingular matrix) using Jacobi and Gauss-Seidel algorithms. Do not use the built-in Matlab functions for solving linear systems (a) Write a Matlab function called Jacobi that consumes a square n x n matrix A, and an n x 1 vector b, and uses the Jacobi technique to solve the system Ax-b, starting with the zero...

  • 1" (20%) (Linear systems) Given a linear system C1 +33 2 One can convert it into an iterative for...

    Relevant Information: 1" (20%) (Linear systems) Given a linear system C1 +33 2 One can convert it into an iterative formula x(n+1) TX(m) + c where X(n) = (a (n),X(n), a (n))t įs the approximated solution at the nth iteration, T3x3 is the iterative matrix and caxi is the vector associated with the correspondent iterative method. (a) (5 %) Compute the associated matrix T and vector c associated with Jacobi method. (b) (5 %) Compute (T) and determine if Jacobi...

  • just 1,2,4 Problem 1 Consider the linear system of equations Ax = b, where x €...

    just 1,2,4 Problem 1 Consider the linear system of equations Ax = b, where x € R4X1, and A= 120 b = and h= 0.1. [2+d -1 0 0 1 1 -1 2+d -1 0 h2 0 -1 2 + 1 Lo 0 -1 2+d] 1. Is the above matrix diagonally dominant? Why 2. Use hand calculations to solve the linear system Ax = b with d=1 with the following methods: (a) Gaussian elimination. (b) LU decomposition. Use MATLAB (L,...

  • QUESTION 2 i 0.2 -1.425 2 Consider the linear system 13 0.52 + 22 0.25.13 =...

    QUESTION 2 i 0.2 -1.425 2 Consider the linear system 13 0.52 + 22 0.25.13 = Ii 0.522 + 23 whose solution is 0.9,-0.8,0.7). (a) Determine whether the coefficient matrix is strictly diagonally dominant. (5) (b) Approximate the solution of the system by performing two iterations of the Gauss-Seidel algorithm, using (10) x() = (0,0,0)* as the initial guess. (c) Approximate the solution of the system using one iteration of the SOR scheme, with w = 0.7 and (5) x(0)...

  • QUESTION 2 Consider the linear system Ti 0.521 + 21 2 0.5x2 + 13 0.25.13 23...

    QUESTION 2 Consider the linear system Ti 0.521 + 21 2 0.5x2 + 13 0.25.13 23 0.2 -1.425 2 whose solution is (0.9,-0.8, 0.7). (a) Determine whether the coefficient matrix is strictly diagonally dominant. (5) (b) Approximate the solution of the system by performing two iterations of the Gauss-Seidel algorithm, using (10) x(0) - (0,0,0)' as the initial guess. (c) Approximate the solution of the system using one iteration of the SOR scheme, with w = 0.7 and (5) x(0)...

  • QUESTION 2 Consider the linear system 11 0.50 + Ii 22 0.579 + 23 0.2533 13...

    QUESTION 2 Consider the linear system 11 0.50 + Ii 22 0.579 + 23 0.2533 13 0.2 -1.425 2 whose solution is (0.9,-0.8.0.7). (a) Determine whether the coefficient matrix is strictly diagonally dominant. (5) (b) Approximate the solution of the system by performing two iterations of the Gauss-Seidel algorithm, using (10) x(0) = (0,0,0) as the initial guess. (c) Approximate the solution of the system using one iteration of the SOR scheme, with w x() = (0,0,0) = 0.7 and...

  • rx2 has 0 coefficient in the first equation QUESTION 2 Consider the linear system 11 +...

    rx2 has 0 coefficient in the first equation QUESTION 2 Consider the linear system 11 + 0.5X1 T1 12 0.5x2 + 13 0.25x3 X3 0.2 -1.425 2 = whose solution is (0.9, -0.8,0.7). (a) Determine whether the coefficient matrix is strictly diagonally dominant. (b) Approximate the solution of the system by performing two iterations of the Gauss-Seidel algorithm, using x(0) = (0,0,0)t as the initial guess. (c) Approximate the solution of the system using one iteration of the SOR scheme,...

  • Please have a clear hand writing :) Question Question 10 (2 marks) Special Attempt 1 Estimate the solution of the follow...

    Please have a clear hand writing :) Question Question 10 (2 marks) Special Attempt 1 Estimate the solution of the following first order autonomous system at t-0.02 using two steps of Euler's method with step-size h 0.01: du dt Maintain at least eight decimal digit accuracy throughout all your calculations. You may express your answers as five decimal digit numbers; for example 3.17423 YOU DO NOT HAVE TO ROUND YOUR FINAL ESTIMATES. v(0.02)Skipped u(0.02) Skipped Question Question 10 (2 marks)...

  • Question No.1 (Marks 10) For an LTI System x(t) = sgn(-t) + u(t + 2) h(t) = e-su(t) Compute g (t) = dx(t) * h(t)...

    Question No.1 (Marks 10) For an LTI System x(t) = sgn(-t) + u(t + 2) h(t) = e-su(t) Compute g (t) = dx(t) * h(t) Question No.1 (Marks 10) For an LTI System x(t) = sgn(-t) + u(t + 2) h(t) = e-su(t) Compute g (t) = dx(t) * h(t)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT