Question

QUESTION 2: Again, for the feedback control system from Question 1, Let G(S) 3 +27 s2 +218 s+504 s2 +6s+34 Part a) What are t
Consider the following feedback control system 65 where G(s) s (s + 10)
QUESTION 2: Again, for the feedback control system from Question 1, Let G(S) 3 +27 s2 +218 s+504 s2 +6s+34 Part a) What are the poles and zeroes of G(s)? Part b) Plot the root-locus using RLOCUS.M - Refer to the MATLAB notes in the back of this handout. - Be sure to indicate the direction of "increasing K" on each branch Part c) Comment on this root-locus plot How it pertains to poles and zeros of G(s), etc. Are closed-loop roots unstable for any "K" values? If so, for what range of K? (Perhaps use RLOCFIND.M command, as described in the back of this handout?)
Consider the following feedback control system 65 where G(s) s (s + 10)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 S 3429s +28s soy 1 2 S ←6-57Command Window Editor C:Users siri\ Desktop\ Untitled.m x Workspace 7 X 14- > Untitled Name ▲ sym3 3 Figure 1 [2-24 122] b[1

Add a comment
Know the answer?
Add Answer to:
QUESTION 2: Again, for the feedback control system from Question 1, Let G(S) 3 +27 s2 +218 s+504 ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. The open loop system G()l be placed into a unity feedback system s2(s+1) as shown below. a. Sk...

    please answer all parts and show the related work. thank you! especially the matlab parts! 1. The open loop system G()l be placed into a unity feedback system s2(s+1) as shown below. a. Sketch the Root Locus of G(s) by hand and compare your results with Matlab. Include your sketch and the Matlab plot. b. This system is unstable for all positive values of K. Explain why. c. Show with a hand sketch and Matlab plot of the root locus...

  • G(s) = K(s + 2) (s2 + 9)/(s-2)(s+6) For the system above, find the following through calculations:

    G(s) = K(s + 2) (s2 + 9)/(s-2)(s+6) For the system above, find the following through calculations: a) Sketch the root locus by hand, labeling all relevant points on your plot. a. Open Loop Poles and Zeros. b. Centroid (if there are any) c. Asymptotes (if there are any) d. Break away points (if there are any). e. Location where the poles cross into the Right Half Plane b) Discuss the stability of the system as the gain changes (i.e. does the system ever become unstable?). Find the...

  • Consider a unity feedback control system with open loop transfer function KG(G) s(s+2)(s + 6) 1....

    Consider a unity feedback control system with open loop transfer function KG(G) s(s+2)(s + 6) 1. Write the characteristic equation of the system 2. Determine the open loop poles and open loop zeros of the system 3. Are there any zeros in infinity? If yes, how many? 4. Sketch the segments of root locus on real axis 5. Determine and sketch the center and the angles of the asymptotes

  • 2. Consider the unity feedback negative system with an open-loop function G(S)-KS. a. Plot the locations...

    2. Consider the unity feedback negative system with an open-loop function G(S)-KS. a. Plot the locations of open-loop poles with X and zeros with O on an s-plane. b. Find the number of segments in the root locus diagram based on the number of poles and zeros. c. The breakaway point (the point at which the two real poles meet and diverge to become complex conjugates) occurs when K = 0.02276. Show that the closed-loop system has repeated poles for...

  • Due Date: April 20, 2 Problem 2: Consider a unity-feedback control system with the following open-loop...

    Due Date: April 20, 2 Problem 2: Consider a unity-feedback control system with the following open-loop transfer function: K G(s)H(s) = s(s2 + 4s + 8) 1. Sketch the root-locus plot. 2. IfK 2, where are the closed-loop poles located? 3. If x = 0.5, where are the closed-loop poles located?

  • Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+2...

    Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+200) G(s) = Do the following using Matlab: a) Sketch the root locus. b) Find the range of gain, K that makes the system stable c) Find the value of K that yields a damping ratio of 0.707 for the system's closed-loop dominant poles. d) Obtain Ts, Tp, %OS for the closed loop system in part c). e) Find the value of K that yields...

  • Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sk...

    Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sketch the root locus. 1. Draw the finite open-loop poles and zeros. ii. Draw the real-axis root locus iii. Draw the asymptotes and root locus branches. (b) Find the value of gain that will make the system marginally stable. (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at s...

  • A robot force control system with unity feedback has a loop transfer function [6 7.11 Tood transf...

    A robot force control system with unity feedback has a loop transfer function [6 7.11 Tood transfer function (6l K(s +2.5) (s2 + 2s 2) (s2 + 4s + 5) (a) Find the gain K that results in dominant roots with a damping ratio of 0.707. Sketch the root locus. (b) Find the actual percent overshoot and peak time for the gain K of part (a) A robot force control system with unity feedback has a loop transfer function [6...

  • Sketch the root locus for the unity feedback system shown in Figure P8.3 for the following...

    Sketch the root locus for the unity feedback system shown in Figure P8.3 for the following transfer functions: (Section: 8.4] K(s + 2)(8 + 6) a. G(s) = 52 + 8 + 25 K( +4) b. G(S) = FIGURE PR3 152 +1) C G(s) - K(s+1) K (n1)(x + 4) For each system record all steps to sketching the root locus: 1) Identify the # of branches of the system 2) Make sure your sketch is symmetric about the real-axis...

  • For the unity feedback system, where G(s) =-s-2)(s-1) make an accurate plot of the root locus...

    For the unity feedback system, where G(s) =-s-2)(s-1) make an accurate plot of the root locus and find the following: (a) The breakaway and break-in points (b) The range of K to keep the system stable (c) The value of K that yields a stable system with critically damped second-order poles (d) The value of K that yields a stable system with a pair of second-order poles that have a damping ratio of 0.707

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT