Question

1:31 HW12.pdf 312 DYNAMIC SYSTEMS AND CONTROL University of Illinois, Chicago Department of Mechanical Engineering Spring 201
0 0
Add a comment Improve this question Transcribed image text
Answer #1

The poles are 0,0,-11,-10

The zeros are -1.

Root locus exists when there is odd number of poles and zeros when seeing from a particular point.

Pole-Zero Map 1 0.6 0.4 0.2 NRI 0 RL li 0.6 -0.8 -1 -12 -10 .8 -6 1 Real Axis (seconds)

Hie pole at -11 reaches zero at infinity; the pole at -10 reaches zero at -1. The two poles at origin have no poles. So. they should reach zeros at infinity. So. definitely there is a breakaway point between the poles that is at the origin itself.
Since three branches will approach to infinity at the infinite gain, having an angle of asymptotes.

(2 x k+1)7T finitepoles

(2 x k+1)7T

(2 x k+1)T

for k=0

(2x 0+1) = ±( -)

\theta_a =\pm \frac{\pi}{3}

Root Locus:

Root Locus 40 30 20 E 10 60 -60 10 -20 -30 -40 -50 40 -30 -20 -10 10 20 Real Axis (seconds)

Calculating the Closed loop Transfer function

01:43 Using RH cnieatofindk 3 2 2.1 2

23lo-k 23lo >K 231o-k 21 2 System k shad b

Add a comment
Know the answer?
Add Answer to:
1:31 HW12.pdf 312 DYNAMIC SYSTEMS AND CONTROL University of Illinois, Chicago Department of Mecha...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Feedback Control of Dynamic System Please Let me know how to solve this problem (5) For the following unity-feedback control system, Y(s) R(s)E D(s) (s+ 2) we want to design a controller D(s) D(s)+a)...

    Feedback Control of Dynamic System Please Let me know how to solve this problem (5) For the following unity-feedback control system, Y(s) R(s)E D(s) (s+ 2) we want to design a controller D(s) D(s)+a) that makes the closed-loop stable for certain positive K values. Design the parameters a and b to satisfy the design condition through the root- locus method (5) For the following unity-feedback control system, Y(s) R(s)E D(s) (s+ 2) we want to design a controller D(s) D(s)+a)...

  • Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block...

    Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block diagram. G(s) is the open-loop transfer function, and the controller is a gain, K. 1. (20) Calculate the open-loop transfer function tar →Q--t G(s) (10) Calculate the steady-state error to a step input of the open-loop system. 7. (in Bode Form) from the Bode plot. (10) Calculate the shortest possible settling time with a percentage overshoot of 5% or less. 8. 2. (10)Plot the...

  • Consider a unity feedback control system with open loop transfer function KG(G) s(s+2)(s + 6) 1....

    Consider a unity feedback control system with open loop transfer function KG(G) s(s+2)(s + 6) 1. Write the characteristic equation of the system 2. Determine the open loop poles and open loop zeros of the system 3. Are there any zeros in infinity? If yes, how many? 4. Sketch the segments of root locus on real axis 5. Determine and sketch the center and the angles of the asymptotes

  • Please Solve As soon as Solve quickly I get you two UPVOTE directly Thank's Abdul-Rahim Taysir...

    Please Solve As soon as Solve quickly I get you two UPVOTE directly Thank's Abdul-Rahim Taysir Objective: is to test your understanding of the root locus sketch, and to see how MATLAB can help you Plot the root-locus for the following unity-feedback systems. You should apply the 10 Rules we dis- cussed in class; you should find breakaway/break-in points, angle of departures, asymptotes, jw-axis crossings, and range of K such that the system is stable. You should also verify your...

  • Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2...

    Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2 Consider the system shown in the above figure, where G(s) = s(8+1128+1) a) Draw a Bode diagram of the open-loop transfer function G(s) when K=1. b) On your plot, indicate the crossover frequencies, PM, and GM. Is the closed-loop system stable with K=1? c) Determine the range of K for which the closed-loop systems will be stable. d) Verify your answer in (c) using...

  • A second-order process is described by its transfer function G(s) = (s+1)(843) and a PI controlle...

    A second-order process is described by its transfer function G(s) = (s+1)(843) and a PI controller by Consider feedback control with unit feedback gain as shown in Figure 1 A disturbance D(s) exists, and to achieve zero steady-state error, a small integral component is applied. Technical limitations restrict the controller gain kp to values of 0.2 or less. The goal is to examine the influence of the controller parameter k on the dynamic response. D(s) Controller Process X(s) Y(s) Figure...

  • . Question 1 (40 marks) This question asks you to demonstrate your understanding of the following...

    . Question 1 (40 marks) This question asks you to demonstrate your understanding of the following learning objectives LO 1.6 Express the Laplace Transform of common mathematical functions and linear ordinary differential equations using both first principles and mathematical tables. LO 1.7 Construct transfer functions for linear dynamic systems from (i) differential equations and (ii) reduction of block diagrams. LO1.8 Determine the time response of a Linear SISO system to an arbitrary input and having arbitrary initial conditions. LO 1.9...

  • ' 1. Review Question a) Name three applications for feedback control systems. b) Functionally, ho...

    ' 1. Review Question a) Name three applications for feedback control systems. b) Functionally, how do closed-loop systems differ from open-loop systems? c) Name the three major design criteria for control systems. d) Name the performance specification for first-order systems. e) Briefly describe how the zeros of the open-loop system affect the root locus and the transient response. What does the Routh-Hurwitz criterion tell us? f) 2. Given the electric network shown in Figure. a) Write the differential equation for...

  • EEL 4652 Control Systems 1 (Fall 2018) Homework 4 Nyquist Stability Criterion + Frequency Domain Design...

    EEL 4652 Control Systems 1 (Fall 2018) Homework 4 Nyquist Stability Criterion + Frequency Domain Design Problem 1: Nyquist Plots and Closed-Loop Stability A unity feedback closed-loop system has a forward transfer function of KG(s). Sketch the Nyquist plot for each of the G(s) cases listed below, and then find if the closed loop system is stable and if not - how many RHP closed loop poles there are. Find it for all the relevant ranges of K for -o0SKo,...

  • Matlab control

    The open-loop system dynamics model for the NASA eight-axis Advanced Research Manipulator II (ARM II) electromechanical shoulder joint/link, actuated by an armature-controlled dc servomotor is shown in Figure P1.The ARM II shoulder joint constant parameters areKa= 12, L=0.006 H, R= 1.4 Ω, Kb= 0.00867, n=200, Km= 4.375, J=Jm+ JL /n2, D=Dm+DL /n2, JL= 1, DL= 0.5, Jm= 0.00844, and Dm= 0.00013.FIGURE P1 Open-loop model for ARM ll(Due to 29/8/2020)a. Obtain the equivalent open-loop transfer function, ?(?) (with a unity feedback...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT