Question

6. Consider two coupled oscillators of mass mi and m2 that are attached by springs and are unstretched when x,-12-0. The damp

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m0

Add a comment
Know the answer?
Add Answer to:
6. Consider two coupled oscillators of mass mi and m2 that are attached by springs and are unstre...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. Two masses mi and m2 are connected to three springs of negligible mass having spring constants...

    4. Two masses mi and m2 are connected to three springs of negligible mass having spring constants k1, k2 and k3, respectively. x2=0 Il k, Let xi and x2 represent The motion of the equations: displacements of masses mi and m2 from their equilibrium positions . coupled system is represented by the system of second-order differential d2x dt2 d2x2 Using Laplace transform to solve the system when k1 1 and x1(0) = 0, xi (0)--1 , x2(0) = 0, x(0)-1....

  • 8.9 The MEMS of Figure 8.29 is formed of two shuttle masses mi and m2 coupled by a serpentine spr...

    8.9 The MEMS of Figure 8.29 is formed of two shuttle masses mi and m2 coupled by a serpentine spring of stiffness k and supported separately by two pairs of identical beam springs- each beam has a stiffness ki. The shuttle masses are subjected to viscous damping individually through substrate interaction-the damping coefficient is c, and an electrostatic force f acts on mi. Use a lumped-parameter model of this MEMS device and obtain a state-space model for it by considering...

  • 3. Consider the spring - mass system shown below, consisting of two masses mi and m2 sus- pended ...

    3. Consider the spring - mass system shown below, consisting of two masses mi and m2 sus- pended from springs with spring constants ki and k2, respectively. Assume that there is no damping in the system. a) Show that the displacements ai and r2 of the masses from their respective equilibrium positions satisfy the differential equations b) Use the above result to show that the spring-mass system satisfies the following fourth order differential equation and c) Find the general solution...

  • Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses...

    Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. The movement of each of the 2 masses relative to its position of static equilibrium is designated by x1(t) and x2(t). 1. Demonstrate that the differential equation whose unknown is the displacement x1(t) is written as follows: 2. Determine the second differential equation whose unknown is the displacement x2(t). 3. Determine the free oscillatory...

  • x2(t) m2 2 Two masses, m1 and m2, are connected with a spring, k. A force,...

    x2(t) m2 2 Two masses, m1 and m2, are connected with a spring, k. A force, f (t), is applied on the first mass. Both masses experience viscous damping, c1 and c2, through the surface that they sit on. The equations of motion that describe the system dynamics are m2 (t)--CzX2 (t)-k(X2(t)-x,(t)) The initial conditions are: x1(0) - a x(0)b (0) = c Assuming zero initial conditions, rearrange the two equations of motion to find the response for X1(s) and...

  • Mechanical vibration subject 3. a. Consider the system of Figure 3. If C1 = C2 =...

    Mechanical vibration subject 3. a. Consider the system of Figure 3. If C1 = C2 = C3 = 0, develops the equation of motion and predict the mass and stiffness matrices. Note that setting k3 = 0 in your solution should result in the stiffness matrix given by [ky + kz -k2 kz b. constructs the characteristics equation from Question 3(a) for the case m1 = 9 kg, m2 = 1 kg, k1 = 24 N/m, k2 = 3 N/m,...

  • Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs...

    Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as indicated in the figure below. We denote by x1 (t) and x2 (t) the movement of each of the 2 masses relative to its static equilibrium position. 1. Prove that the differential equation whose unknown is the displacement x1 (t) is written in the following form: 2. Deduce the second differential equation whose unknown is the displacement...

  • Additional Prob. 1: Consider a two-mass quarter-car model of a suspension system as shown in figure....

    Additional Prob. 1: Consider a two-mass quarter-car model of a suspension system as shown in figure. The system properties are: m1 = 240 kg, m2 = 36 kg, k1 = 1.6 x 104 N/m, k2 = 1.6 x 105 N/m, C1 = 98 N-s/m a. Find equations of motion for the system. c. If y(t) is a unit step function, find the responses X1 and x between 0-10 s using Simulink. m m,

  • 6.(16) Consider the spring-mass system shown, consisting of two unit masses m, and my suspended from...

    6.(16) Consider the spring-mass system shown, consisting of two unit masses m, and my suspended from springs with constants k, and ky, respectively. Assuming that there is no damping in the system, the displacement y(t) of the bottom mass m, from its equilibrium positions satisfies the 4-order equation (4) y2 + k + k)y + k_k2yz = e-2, where f(t) = e-2 is an outside force driving the motion of m. If a 24 N weight would stretch the top...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT