Question

Please explain your answer and clarify your steps3. Magnetic Circuit The magnetic circuit shown in the figure is formed by two E cores made of two different materials, with

0 0
Add a comment Improve this question Transcribed image text
Answer #1

HV coML. per Reqpnh ち ,チ·5 he 3.75 =75.974 Hir gap Meluctanca 0-5* 1oPeev- (4+Ks) ll@cr+リ NT NT rkt 237 065 小UP)2 5Aveg leay ondant

Add a comment
Know the answer?
Add Answer to:
3. Magnetic Circuit The magnetic circuit shown in the figure is formed by two 'E' cores made of t...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A series-parallel magnetic circuit with its pertinent dimensions in centimeters is given in Figure 1. If...

    A series-parallel magnetic circuit with its pertinent dimensions in centimeters is given in Figure 1. If the flux density in the air-gap is 0.5 T and the relative permeability of the magnetic region is 500, calculate; a) Calculate the flux density in the air gap b) Calculate the reluctance of the air gap c) Calculate the flux • through the coil in the figure d) The current in the 1000-turn coil using the magnetic circuit approach. e) Calculate the inductance...

  • Question. 1 A series-parallel magnetic circuit with its pertinent dimensions in centimeters is given in Figure...

    Question. 1 A series-parallel magnetic circuit with its pertinent dimensions in centimeters is given in Figure 1. If the flux density in the air-gap is 0.5 T and the relative permeability of the magnetic region is 500, calculate; a) Calculate the flux density in the air gap b) Calculate the reluctance of the air gap- c) Calculate the flux o through the coil in the figure d) The current in the 1000-turn coil using the magnetic circuit approach. e) Calculate...

  • 1. (a) The C core and I core as shown in the below figure have a...

    1. (a) The C core and I core as shown in the below figure have a uniform cross-section of 5mm x 5mm. (i) If both cores have a relative permeability ur of 1000, calculate the reluctance when both cores are attached to each other to form a rectangular core. (ii) When a coil of 40 turns is wound around the above rectangular core, calculate the corresponding inductance. (b) The cores described in part (a) are now assembled with a non-magnetic...

  • Magnetic Circuits y Part A - Calculate reluctances Learning Goal: To understand how magnetic structures can...

    Magnetic Circuits y Part A - Calculate reluctances Learning Goal: To understand how magnetic structures can be analyzed by drawing an equivalent circuit, and to use the equivalent circuit to calculate magnetic fluxes and coll currents. When analyzing magnetic structures, the geometry is often complex enough that using the fundamental rules can be very difficult without numerical methods. However, there are approximate methods that are often sufficient for engineering calculations. When the magnetic field is mostly contained within cores of...

  • Magnetic Circuits - Part A - Calculate reluctances Using the information given in the introduction, calculate...

    Magnetic Circuits - Part A - Calculate reluctances Using the information given in the introduction, calculate the reluctances for the equivalent circuit shown. Express your answers to three significant figures in A turns w View Available Hints) 00 AED Ivec ? R. R₂ R- W Learning Goal: To understand how magnetic structures can be analyzed by drawing an equivalent circuit, and to use the equivalent circuit to calculate magnetic fixes and coll currents. When analyzing magnetic structures, the geometry is...

  • 2. The magnetic circuit of Fig. 1 consists of rings of magnetic material in a stack...

    2. The magnetic circuit of Fig. 1 consists of rings of magnetic material in a stack of height h. The rings have inner radius Ri and outer radius Ro. Assume that the iron is of infinite permeability (μ → x) and neglect the effects of magnetic leakage and fringing Ri N turns For Ri-3.2 cm, Roー4.1 cm, ћ-1.8 cm, g = 0.15 cm, N-72 turns, calculate a. The mean core length le and the core corss-sectional area Ac. b. The...

  • explain in a simple way Assignment Report Q1. For the Magnetic circuit shown in Fig. 5.1,...

    explain in a simple way Assignment Report Q1. For the Magnetic circuit shown in Fig. 5.1, relative permeability of the core material is 6000, its rectangular cross section is 2 cm by 3 cm. The coil has 500 turns and the core thickness is 3 cm. If flux density in the gap is 0.25 T. Find the following: a) The gap reluctance (assume that fringing increases effective cross-sectional area of air gap by 50%). b) The required airgap mmf. c)...

  • Problem 1 (30 points) The magnetic circuit shown in Fig. 1 is made of casteel with...

    Problem 1 (30 points) The magnetic circuit shown in Fig. 1 is made of casteel with magnetining curve shown 2. The coil A has 350 turns, and the coil Bhas 150 turns. The two coils are connected in series to a voltage source. The depth of the core is 2 cm. Given the dimensions (in cm) as shown in the fie I and to establish a flux density of 0.6 T in the airp. Determine: a. Reluctance of the magnetic...

  • how can I solve the following magnetic circuit? The iron core shown in Figure 15.13(a) has a cross section of 2 cm by 2 cm and a relative permeability of 1000. The coil has 500 turns and carri...

    how can I solve the following magnetic circuit? The iron core shown in Figure 15.13(a) has a cross section of 2 cm by 2 cm and a relative permeability of 1000. The coil has 500 turns and carries a current of i 2 A. Find the flux density in each air gap. tad in rioure 15 13hi First we compute the -_-10 cm-ㄧ 커←_-10 cm cITI Gap b 10cm 0.5 cm emGap The iron core shown in Figure 15.13(a) has...

  • ***current is not given in question*** Question 2B [18 Marks The magnetic circuit shown below (all...

    ***current is not given in question*** Question 2B [18 Marks The magnetic circuit shown below (all dimensions in centimeters) is made from silicon steel (B-H curve attached). The magnetic flux density in the middle limb is equal to 1.2 T and the coil consists of 100 turns. a) Calculate the reluctance of each air gap.[4] b) Calculate the amount of magnetic flux in the middle limb. [1] c) Calculate the reluctance of the middle limb.[3] d) Determine the amount of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT