Question

7-2 The section of shaft shown in the figure is to be designed to approximate relative sizes of d 0.75D andD/20 with diameter

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Metenial SA -o-265 ka = 2.70 (ins) o 69 coe hesd to toval fon the en Tne -o-107 o-31 งา 20-1S 20こ0.058 in A-1s -14 o-151-46 (4-oo 54-g (13) 160 (103) 0-30 a I-23 in 3L. 1-23, -о-о 62 ih 2 Oo 923 16 o-7.9.9 o 799 VaJue kfこ1.gi 2. 6C3-s) bearut caloothe next avaioble bore die Now Jnem e -: Nomihal Sizeh d - o 94 ih

Add a comment
Know the answer?
Add Answer to:
7-2 The section of shaft shown in the figure is to be designed to approximate relative sizes of d...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The section of shaft shown in the figure is to be designed to approximate relative sizes of d 0.7...

    The section of shaft shown in the figure is to be designed to approximate relative sizes of d 0.75D and r- D/20 with diameter d conforming to that of standard rolling-bearing bore sizes. The shaft is to be made of SAE 2340 steel, heat-treated to obtain minimum strengths in the shoulder area of 175 kpsi ultimate tensile strength and 160 kpsi yield strength with a Brinell hardness not less than 370. At the shoulder the shaft is subjected to a...

  • Problems 1. (Subtotal: 21 points) A steady torque of 1500 Ibf in is transmitted by a...

    Problems 1. (Subtotal: 21 points) A steady torque of 1500 Ibf in is transmitted by a machined shaft made of steel with an ultimate tensile strength of 100 kpsi. The transverse cross section at the location of a shoulder against which a gear sits is subjected to a bending moment which is a sinusoidal function of time with a maximum of 800 lbf-in. Furthermore, this cross section is the location for the maximum von Mises stress. The smaller diameter at...

  • The shaft shown in the figure is driven by a gear at the right keyway, drives...

    The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway, and is supported by two deep-groove ball bearings at locations A and B. The shaft is made from AISI 1045 cold-drawn steel. At steady- state speed, the gear transmits a radial load of 300 lbf and a tangential load of 700 lbf at a pitch diameter of 8 in. Assume that the weight and axial load of the...

  • QUESTION 10 The shaft shown in the figure is driven by a gear at the right...

    QUESTION 10 The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway, and is supported by two deep-groove ball bearings at locations A and B. The shaft is made from AISI 1045 cold-drawn steel. At steady-state speed, the gear transmits a radial load of 300 lbf and a tangential load of 700 lbf at a pitch diameter of 8 in. Assume that the weight and axial load of...

  • The shaft shown in the figure is driven by a gear at the right keyway, drives...

    The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway, and is supported by two deep-groove ball bearings at locations A and B. The shaft is made from AISI 1045 cold-drawn steel. At steady-state speed, the gear transmits a radial load of 300 lbf and a tangential load of 700 lbf at a pitch diameter of 8 in. Assume that the weight and axial load of the fan...

  • The shaft shown in the figure is driven by a gear at the right keyway, drives...

    The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway, and is supported by two deep-groove ball bearings at locations A and B. The shaft is made from AISI 1045 cold-drawn steel. At steady-state speed, the gear transmits a radial load of 300 lbf and a tangential load of 700 lbf at a pitch diameter of 8 in. Assume that the weight and axial load of the fan...

  • Oestion-2 The rotating shaft shown in the figure is machined from S- 570Mpa. It is subjected...

    Oestion-2 The rotating shaft shown in the figure is machined from S- 570Mpa. It is subjected to a fluctuating load varyýing om Note all length dimensions are in mm) Find the reactions (Ri and Ra) at ure is machined from AISI 1020 CD steel with S670Mpa und varying from 0 to 7000N a) shaft (at 180mm from left). upports and maximum bending moment Miman at most critical point on and b) Find the alternating g amplitude (σ.), midrange (σ )...

  • ​The rotating solid steel shaft is simply supported by bearings at points B and C and is driven by gear (not shown) which meshes with the spur gear at D

    The rotating solid steel shaft is simply supported by bearings at points B and C and is driven by gear (not shown) which meshes with the spur gear at D, which has a 150-mm pitch diameter. The force F from the drive gear acts at a pressure angle of 20". The shaft transmits a torque to point A of TA = 340 N.m. The shaft is machined from steel with Sy= 420 MPa and Sut = 560 MPa. The fatigue...

  • 2. (8 points) A solid shaft shown below is loaded in bending and torsion with steady...

    2. (8 points) A solid shaft shown below is loaded in bending and torsion with steady rotation. The total bending moment and torque diagrams are also given. The selected shaft steel material has an ultimate tensile strength Sut = 68kpsi, initial yield stress Sy = 57kpsi, and fully corrected factors for endurance limit, kakykekakek, = 0.60. (a) (6 points) Determine the factor of safety at point D of the shaft using DE-ASME Elliptic criterion. Assume K, = 1.8 and Kfs...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT